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Daylight illumination has been an essential consideration during design for architects 

throughout history. Daylight is a crucial design component for long-term 

sustainability that influences the visual and thermal comfort of the occupants and 

energy usage in buildings. Utilizing daylighting effectively reduces the energy 

required for artificial lighting and the indoor thermal loads of spaces. However, 

dense urban areas prevent daylight from reaching buildings. Each surrounding 

building acts as a shadow element obstructing the building's access to natural light. 

Therefore, analyzing daylight illuminances and understanding the building design 

characteristics and urban form parameters that affect daylight illuminance is 

unavoidable for sustainable building design. Simulations are one of the most 

preferred tools to analyze the level of illuminance in building designers. Simulations 

require detailed modeling knowledge and expertise to get precise results. Also, 

daylighting simulations performed at an urban scale take much computational time. 

In contrast, machine learning (ML) models enable designers to analyze daylighting 

levels with less computational time and detailed knowledge. This study aims to 
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develop a method to predict hourly indoor daylighting illuminances in an urban 

context using ML models. For the development of the method, three different ML 

models (multi-layer perceptrons, random forest, extreme gradient boosting) were 

developed, and their performance results were compared. The ML model with the 

highest performance accuracy was selected as the final model.  The developed 

method helps designers/ architects to analyze hourly indoor daylight illuminances in 

an urban context. The developed methodology also calculates how much daylight-

dependent electric lighting is used in buildings by analyzing hourly indoor 

daylighting illuminances on an urban scale.  The proposed methodology enables the 

integration of indoor daylighting analysis with the electric lighting energy 

consumption calculation based on real-time estimation of daylight illuminances. 

Residential units in the  Bahçelievler neighborhood in Ankara were simulated using 

various design factors, and the simulation results were utilized for training and 

evaluating the machine learning models. The proposed model can enhance the usage 

of machine learning in architectural design stages to analyze daylight illuminances, 

accordingly, forecast the artificial electric load in buildings, and help designers 

integrate daylight into the buildings.  

 

Keywords: Daylighting, Daylighting Illuminance Prediction, Machine Learning 

Models, Urban Scale Daylighting Analysis 
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SÜRDÜRÜLEBİLİR BİNALAR İÇİN İÇ MEKAN GÜNIŞIĞI 
AYDINLANMASININ KENT ÖLÇEKLİ TAHMİNİ 
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Aralık 2022, 134 sayfa 

 

Tarih boyunca, gün ışığının tasarımlarla entegrasyonunu artırmak mimarlar için her 

zaman önemli bir konu olmuştur. Gün ışığı, kullanıcının ruh halini, bina sakinlerinin 

görsel ve termal konforunu ve binalarda enerji kullanımını etkileyen uzun vadeli 

sürdürülebilirlik için önemli bir tasarım bileşenidir. Gün ışığından faydalanmak, 

yapay aydınlatma için gereken enerjiyi ve yapılar üzerindeki iç yükü etkili bir şekilde 

azaltır. Ancak yoğun kentsel alanlar, gün ışığının binalara ulaşmasını 

engellemektedir. Çevredeki her bina, binanın doğal ışığa erişimini engelleyen bir 

gölge unsuru görevi görür. Bu nedenle, sürdürülebilir bina tasarımı için gün ışığı 

aydınlanmalarının analiz edilmesi ve gün ışığı aydınlanmasını etkileyen bina tasarım 

özelliklerinin ve kentsel form parametrelerinin anlaşılması kaçınılmazdır. 

Simülasyonlar, bina tasarımcılarının aydınlanma düzeyini analiz etmek için en çok 

tercih ettiği araçlardan biridir. Simülasyonlar, detaylı ve doğru sonuçlar elde etmek 

için ayrıntılı modelleme bilgisi ve uzmanlığı gerektirir. Ayrıca, kentsel ölçekte 

gerçekleştirilen günışığı simülasyonları çok fazla hesaplama zamanı almaktadır. 

Buna karşılık, makine öğrenimi modelleri, tasarımcıların daha az hesaplama süresi 

ile ayrıntılı bilgi gerektirmeden günışığı seviyelerini analiz etmelerini sağlar. Bu 
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çalışma, makine öğrenmesi (ML) modellerini kullanarak kentsel bağlamda saatlik iç 

mekan günışığı aydınlanmalarını tahmin etmek için bir araç geliştirmeyi 

amaçlamaktadır. Aracın geliştirilmesi için üç farklı ML modeli (MLP, RF, 

XGBoost) geliştirilmiş ve performans sonuçları karşılaştırılmıştır. Performans 

doğruluğu en yüksek olan makine öğrenimi modeli nihai model olarak seçilmiştir. 

Geliştirilen araç, tasarımcıların/mimarların kentsel bağlamda saatlik iç mekan gün 

ışığı aydınlatmalarını analiz etmelerine yardımcı olacaktır. Geliştirilen araç aynı 

zamanda kentsel ölçekte saatlik iç mekan günışığı aydınlanmalarını analiz ederek 

binalarda gün ışığına bağlı olarak ne kadar elektrik aydınlatmasının kullanıldığını da 

hesaplamaktadır. Önerilen metodoloji, gün ışığı aydınlanmalarının gerçek zamanlı 

tahminine dayalı elektrik aydınlatma enerji tüketimi hesaplaması ile iç mekan 

günışığı analizinin entegrasyonunu sağlar. Ankara Bahçelievler mahallesindeki 

konut birimleri çeşitli tasarım parametreleri kullanılarak simüle edilmiş ve 

simülasyon sonuçlarından makine öğrenmesi modellerinin eğitimi ve 

değerlendirilmesi için yararlanılmıştır. Önerilen model, gün ışığı aydınlanmalarını 

analiz etmek, buna bağlı binalarda aydınlatma için kullanılan elektrik tüketimini 

tahmin etmek ve tasarımcıların gün ışığını binalara entegre etmelerine yardımcı 

olmak için mimari tasarım aşamalarında makine öğreniminin kullanımını 

artıracaktır. 

 

 

Anahtar Kelimeler: Günışığı, Günışığı Aydınlanma Tahminlemesi, Makine 

Öğrenmesi Modelleri, Kentsel Ölçekte Günışığı Analizi 
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CHAPTER 1  

1 INTRODUCTION  

Throughout the history of architecture, daylight has been accepted as an essential 

element of design. Ancient civilizations like the Persians, Arabs, Greeks, and 

Romans designed their homes around courtyards that welcomed natural light 

and established solar zoning laws that gave people access to the sun inside their 

homes (Boubekri, 2014). In ancient times, daylight was considered a decorative and 

aesthetic design element that was integrated into spaces in different ways to reflect 

the spirit of the space. Today, daylight is no longer regarded solely as a decorative 

element but also as a critical concern for long-term sustainability that influences the 

mood and behavior of humans (Webb, 2006), the visual and thermal comfort of 

occupants, and energy usage in buildings (D. H. W. Li et al., n.d.). Daylight regulates 

the circadian cycle of hormone secretions and body temperature, affecting 

sleep/wake states, alertness, mood, and behavior (Webb, 2006). Circadian rhythm is 

significantly impacted by daylight, which dominates human psychology and 

behavior. Moreover, vision and glare affect the occupants' visual comfort and are 

closely related to daylight. A good daylight design aims to provide enough light for 

successful visual performance while ensuring an appropriate level of comfort; 

therefore, both the visual and non-visual aspects of daylight should be considered 

(Wienold & Christoffersen, 2006). Daylight has significant effects on the building 

as well as its effects on the occupants of the building. Buildings use nearly 40% of 

the energy used in the world, and a significant amount of that energy is used for 

lighting (Kaminska & O˙ Zadowicz, 2018). Energy used for lighting accounts for 

approximately 19% of global electrical energy consumption (Enkvist et al., 2010; 

Papinutto et al., 2022). Utilizing daylight reduces the energy required for artificial 
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lighting and building interior load. Reported savings in lighting energy consumption 

obtained by increasing the use of daylight can start from 15% and go up to 80% 

(Waide & Tanishima, 2006). Therefore, daylight should be considered a passive 

design strategy to maintain occupants' physical and psychological well-being, 

enabling visual comfort and minimizing artificial electric lighting consumption and 

buildings.  

However, dense urban areas stemming from rapid urbanization are a crucial barrier 

to free daylight access to buildings. Each building acts as context shading and leads 

to problems, including reflecting daylight or blocking the daylight, which requires 

different solutions. The reflectivity of surrounding buildings results in visual 

discomfort for other buildings. Conversely, daylight access can be completely 

blocked due to the surrounding buildings. As a result, building characteristics and 

urban form significantly influence how daylight penetrates the buildings. Therefore, 

the daylight illuminances of buildings should be analyzed by considering not only 

building-related parameters but also urban form-related parameters.  

The impacts of design elements for efficient daylighting, such as building 

orientation, climate, window-to-wall ratio (WWR), glazing type, and fixed outside 

shade, have been comprehensively investigated in several studies over the past few 

decades. Several methods are used to analyze daylighting from past to present; the 

most recent are simulation and machine learning. Computer simulation tools enable 

designers to comprehensively analyze daylight access to the buildings in 

hourly/annual resolution. However, simulation tools are limited because of the 

excessive computational time of urban modeling to analyze daylight and its necessity 

for detailed modeling knowledge by users (Nault et al., 2017). Also, simulations 

require a complex set of inputs such as weather data, building, and urban form 

parameters (Ayoub, 2019a). The resulting computational cost and dependence on 

usage knowledge limit the interactivity between the tool results and the design 

process (Beckers & Rodríguez, 2009). 
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Machine learning (ML) models provide comprehensive daylight analysis by 

reducing computational costs without requiring detailed usage knowledge (Ayoub, 

2020). The models learn the relationship between inputs and output based on the 

training dataset. Once the model is trained with the data, it can be adapted to different 

buildings when parameters are indicated. Although ML applications to daylighting 

estimation have increased by considering different input and output parameters in 

recent years, daylighting studies focus on working environments such as offices 

(Dogan & Park, 2019). Daylight access in residential buildings on an urban scale 

needs to be analyzed in detail.  

Despite the increasing ML applications in daylighting studies, fewer studies focused 

on the real-time prediction of daylight performance metrics in an urban context. 

Generally, case studies focused on a singular building, excluded from its urban 

context. Ignoring urban parameters leads daylighting to being calculated in a biased 

way. At the urban scale, each element around the building can affect the building in 

different ways. It can reflect the daylight to the building or block the daylight 

reaching the building to a certain extent or completely. Therefore, ignoring the 

impact of urban elements on the daylighting penetration and access of buildings leads 

to unrealistic calculations. 

Moreover, it is important to make real-time predictions by considering the urban 

form and building parameters to observe the daylight changes in hourly resolution. 

Using machine learning models, different daylighting performance metrics are 

estimated in daylighting prediction studies. These performance metrics can provide 

specific information, such as how much the space meets certain illuminance levels 

annually or what percentage of an area remains above a certain illuminance level. 

However, the real-time estimation of daylighting prediction enables users to analyze 

how much the space is illuminated in hourly resolution. This information can be used 

in different areas directly related to daylighting, such as visual comfort and 

electricity consumption. The illuminance results predicted by ML models can allow 

the estimation of electricity consumption based on daylight. On the other hand, there 

is limited information about how predicted daylighting illuminance results can be 
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utilized to forecast electric lighting consumption. The real-time estimation of 

daylight illuminance considering the urban morphology and integrating this 

information to forecast the electric usage for artificial lighting provides a 

comprehensive analysis of daylight usage and its effect on electric lighting usage in 

the architectural design stages.   

1.1 Problem Statement 

Daylight is a free source that aids sustainable design by improving humans' 

psychological and physical health, the visual and thermal comfort of occupants, and 

decreasing electrical lighting energy usage in buildings. Integrating daylight with 

buildings is one of the most feasible passive design strategies supporting the 

sustainable design concept. However, the surrounding buildings block daylight 

access to buildings on an urban scale. Daylighting illumination can be quantified 

utilizing daylighting simulation. However, simulations require the development of 

3D models in which semantic data related to daylighting illuminance is captured. 

However, these model-based approaches involve a high cost of model development 

and a high computational cost of simulations. As a result, their use in design 

exploration, during which immediate feedback to designers is critical, remains 

limited. This also restricts the number of alternatives that can be explored during 

design. Therefore, there is a need for a quick analysis of indoor daylighting 

illuminances in an urban context for performance-driven decision-making. The 

analysis requires a detailed understanding of urban form parameters and their 

influences on indoor daylighting illuminances. Identifying the gaps in the literature, 

this thesis will focus on the following research problems: 

o Factors affecting daylighting illuminance at the urban scale should be 

examined in detail, and estimation should be made using these parameters in 

ML models. However, most of the studies examined in the literature 

considered the spaces as a single unit, ignoring the urban form parameters. 

This leads to overestimating the estimated indoor daylighting illuminance 
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values, resulting in miscalculations. ML models should be trained by 

considering urban form, building, and climate parameters. 

o Indoor daylighting illuminance values analyzed on an urban scale enable 

different analyzes based on daylight. If the amount of daylighting in the area 

can be precisely calculated, visual comfort, glare, and electric lighting 

assessments can be made. Although ML models have attempted to forecast 

values for daylighting illuminance in the literature, the use of the model's data 

in other domains has not been extensively investigated. Uses of the results of 

ML models related to daylighting should be explored. 

o In the literature, there are studies in which the energy used for electrical 

lighting in buildings is estimated with ML models using simulation data of 

energy models or, if available, ready consumption data. However, calculating 

electrical lighting consumption based on predicted indoor daylighting 

illuminances on an urban scale has not been studied thoroughly yet. The 

impact of daylighting integration on electricity consumption in buildings can 

be studied by calculating the electric lighting consumption based on 

daylighting estimation at the urban scale. 

o Instead of a single ML model, different data-driven methods (ML) that 

support performance-based design decisions should be explored for quick 

analysis of indoor daylighting illuminances in an urban context. Multiple ML 

models to predict indoor daylighting illuminances in an urban context with 

high accuracy should be discovered, and the performance results of the 

models should be compared with analysis. Providing immediate feedback 

and ease of use, the prediction models have the potential to be used by 

architects, urban planners, and companies.   

1.2 Research Objectives 

This thesis aims to investigate the potential of machine learning to predict indoor 

daylighting illuminance at the urban scale. A comprehensive literature review on the 
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state-of-the-art factors that affect indoor daylighting performance, daylighting 

performance metrics and calculation methods, and electric lighting energy 

consumption calculations were conducted to achieve this aim. The potential and 

limitations of the studies were analyzed.  Based on the review, different machine-

learning models were developed with analyzed parameters. The developed ML 

models' performances were compared, and the model that performed the best overall 

was selected as the final model. The developed model can be utilized to perform 

daylighting analysis at an hourly resolution on an urban scale at different stages of 

the design and to make design decisions based on the analysis.  

After the methodology was developed, the potential areas that the method could be 

utilized were explored. The developed methodology can also calculate lighting 

electricity consumption based on daylight. This exploration aims to comprehensively 

analyze the real-time estimation of indoor daylighting illuminances at the urban scale 

and artificial lighting electric consumption based on daylighting illuminances.  

The method was developed based on simulation data. The illuminance results of 

different buildings in Bahçelievler, Ankara, were obtained from simulations, and 

different ML models were trained based on the simulation data.  

To conclude, the aims of this thesis are; 

o Exploring design parameters that influence indoor daylighting illuminances 

at the urban scale 

o Exploring possible different ML models to predict indoor daylighting 

illuminances at the urban scale in hourly resolution 

o Developing a design method that can support decision-making in the 

architectural design stages based on daylighting illuminances using ML 

models 

o Integrating the results of the prediction model to forecast the electric lighting 

consumption in buildings based on daylighting and make a comprehensive 

analysis between the electric lighting usage and daylighting 
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1.3 Research Questions 

The primary research question and its supporting questions arose as follows in light 

of the research gap described in the introduction: 

Main thesis questions:  

o To which extent can data-driven (ML) methods accurately calculate the 

indoor daylight illuminances and associated energy use at the urban scale 

considering the effects of surrounding buildings?   

Sub-Questions: 

o Which building and urban-related input features should be used to perform 

the urban scale analysis in the machine learning model? 

o What ML models have the best predictive capacity in predicting indoor 

daylighting illuminances? 

o How can ML models be used to calculate electrical lighting energy 

consumption by analyzing daylighting performance on an urban scale? 

o How does the electrical lighting energy consumption calculated based on 

daylighting that is predicted with ML models differ when compared to the 

electrical lighting energy consumption calculated with the standard schedules 

used in Urban Building Energy Modeling (UBEM)? 

1.4 Thesis Outline 

The thesis is composed of five main chapters, including the present chapter. In order 

to reach the objectives of this thesis, the research work went through the following 

chapters of the study: 
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Chapter 1 (Introduction) 

The current chapter is called an 'Introduction' in which the thesis' motivation, 

aims and objectives, research questions, and contribution to the related field are 

explained.  

Chapter 2 (Related Works & Background): 

The literature will be reviewed to examine the relationship between 

architecture, sustainability, and daylight, factors that affect daylighting illuminances, 

daylighting performance metrics, calculation methods for daylighting performance 

metrics, and calculation of electric lighting in buildings. The objectives of this thesis 

are stated by identifying the knowledge gaps in the literature, and the need for the 

proposed methodology is highlighted. 

Chapter 3 (Methodology): 

The methodology of the proposed design methodology to achieve the 

objectives of the thesis is explained in this chapter. A method based on ML models 

for estimating indoor daylighting illuminances in an urban context is developed to 

address the need for data-driven tools that assist quick design decisions in 

architectural design stages. For this purpose, several buildings are modeled and 

simulated for dataset generation. The results of the simulations are used to train and 

validate the ML model. The model is evaluated based on different performance 

metrics. Three different ML model is trained. The model that showed the best 

performance result was chosen as the final model. After the development, other 

possible applications of the method are explored. The developed method also 

calculates electric lighting usage in buildings on an urban scale based on daylight.  

Chapter 4 (Results):  

The accuracy of the ML models in predicting indoor daylighting illuminances in an 

urban context is reported in this chapter. The performances of the models are 

compared in terms of performance metrics. Based on the developed methodology, 
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electric lighting consumption results of different cases will be analyzed in this 

chapter.  

Chapter 5 (Conclusion):  

The study's contributions and the proposed method's applicability and 

limitations will be examined in this chapter.   
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CHAPTER 2  

2 LITERATURE REVIEW 

This chapter examines the existing literature to achieve the thesis aims. The 

relationship between daylighting and architecture, the visual and non-visual effects 

of daylighting, the relationship between daylighting and energy, factors that affect 

daylight illuminances, daylighting performance metrics, daylighting calculation 

methods, and electric lighting energy consumption calculations are examined based 

on the review. Figure 2.1 shows the concepts reviewed in Chapter 2. At the end of 

the chapter, the identified gaps in the studies are given.  

DAYLIGHTING

Architecture

Visual & Non-
Visual 
Effects

Energy

Factors that Affect 
Daylight Illuminances

Performance Metrics

Static Performance 
Metrics
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Machine Learning 
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Electric Lighting 
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Figure 2.1. The concepts reviewed in Chapter 2 
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2.1 Daylighting and Architecture 

Augmenting natural light in architectural designs has been an important topic for 

architects throughout history. It does more than give us the physical ability to see; it 

also gives architecture the primary energy component required for the coexistence 

of an integrated dualism of matter and energy, giving users a sense of aesthetic 

pleasure (Serra, 1998).  In the architecture of ancient civilizations such as the 

Persians, the Arabs, the Greeks, and the Romans, courtyards were designed to 

penetrate daylight (Boubekri, 2014). Moreover, in some civilizations, daylight is 

considered a right and necessity (Turan et al., 2020). Protecting access to daylight 

was reflected in urban zoning laws in all major cities. The right to light of building 

residents is protected in the United States by legal action and legislation in some 

states (Pfeiffer, 1982; Davis, 1989). Many cities' urban forms today result from 

zoning regulations implemented throughout the 20th century to preserve individual 

and public rights. More recently, New York City's zoning laws specified limitations 

regarding buildings' exterior design to reduce shade (Willis, 1995).  

While the use of natural light in city planning is pritiorized in different ways, the use 

of daylight at the building scale is also handled from different perspectives. 

Historically, daylight usage was one of the major design considerations, as artificial 

lighting is expensive and difficult to obtain (Bainbridge & Haggard, 2011). Natural 

light is a deciding design element for determining the quality of a place, whether it 

comes from a single entrance like the Pantheon or more intricate designs like those 

found in baroque, cathedral, church, and mosque architecture. Especially daylight 

was integrated into the buildings to reflect the holistic spirit of the sacred places.  

Peter Zumthor stated that one of the nine basic elements that determine the 

atmosphere of space is light in his famous book ‘Atmosphere’(Zumthor, 2006). Le 

Corbusier carefully constructed daylight as a design element, especially in the two 

most well-known buildings, ‘The Chapel at Ronchamp’ and ‘Paris Church of Saint-

Pierre in Firminy’. He prioritized the use of daylight not only based on buildings but 

also on urban design ideas. Le Corbusier also designs city master plans (La Ville 
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Radieuse) to increase green spaces and access to daylight. ‘Kimbell Art Museum’ is 

one of the most important works of Louis Kahn to merge structure with daylight. 

Tadao Ando is another important architect for designing light in spaces.  'Church of 

Light,' by Tadao Ando, merges natural light with architecture to reflect the holy spirit 

of the church. Although sometimes daylight has been integrated into the building 

employing small openings, over time, it has been integrated with the space with large 

openings and even almost full glass facades. One of the most famous examples of 

this is Glass House by Philip Johnson.  

Today, daylight is no longer regarded solely as a decorative element but as a critical 

concern for long-term sustainability that influences the mood and behavior of 

humans (Webb, 2006), the visual and thermal comfort of occupants, and energy 

usage in buildings (D. H. W. Li et al., n.d.).  Figure 2.2 shows the integration of 

daylighting in different types of buildings (residential, office, and public). 
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(a): De Syllas House, London

 

(c): Alexander Court, Washington (Fox 

Architects) 

 

(b): Passmores Academy, United Kingdom 

(Tim Crocker)

 

 

Figure 2.2. Daylighting integration in a different types of buildings 

Therefore, architects and designers aim to provide good daylighting in buildings. 

However, what good daylighting is a debatable topic. The various professions 

tackled this question from different perspectives. According to Reinhart & Galasiu's 

(Reinhart et al., 2006) survey, there are five sample definitions for good daylighting. 

The architecture profession describes natural light as a tool that interacts with 

building form to create an interior environment that is aesthetically interesting, 

healthy, and productive. From lighting savings design, good daylighting means 

replacing indoor electric illumination needs with daylight, which decreases annual 

energy consumption for lighting. Regarding building energy consumption, good 

daylighting includes fenestration systems and responsive electric lighting control 
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devices leading to reduced building energy requirements, including lighting, heating, 

and cooling. Load management defines daylighting as dynamic control of 

fenestration and lighting to monitor and control peak electric load. Finally, from a 

cost perspective, daylight means strategies to minimize operating costs and 

maximize output, sales, or productivity. The same survey results showed that even 

though the definitions and relevance of these definitions of daylighting vary from 

profession to profession, it is inevitable that good daylighting is essential for 

sustainable architectural design.  

Integration of daylighting with buildings requires analyzing the position of the 

building with its site and microclimate, designing proper building and glazing 

elements properties to meet certain requirements, including increasing daylight 

levels in the building, protecting the occupants against excessive glare, enabling a 

good view, minimizing solar heat gain in the summer while maximizing it in winter 

(Boubekri, 2014). Daylight can be integrated using passive design strategies. Figure 

2.3 illustrates the passive design strategies used for integrating daylight with 

buildings.  
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Figure 2.3. Passive design strategies to integrate daylight into the buildings 

Mainly, daylight penetrates the building through toplight and sidelight (Bainbridge 

& Haggard, 2011). Top lighting strategies may vary depending on the usage and 

scale of the space and structure.  Top lighting provides deeper penetration of daylight 

into the space.  Generally, it enables uniform lighting distribution. Several strategies, 

including clerestory windows, sawtooth roofs, roof monitors, skylights, light tubes, 

and wells, are applied as top lighting strategies in buildings. Figure 2.4 shows the 

demonstrative applications for top lighting in buildings.  
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(a): University of New Mexico Law School, 

United States (Francesca Desmarais) 

(b): Green Lighthouse, Denmark (Adam Mark, 

Courtesy of VELUX Group)

 

Figure 2.4. Top lighting applications in buildings 

Sidelight systems are the ones that collect and direct daylight inside the spaces 

through the openings in the wall (Boubekri, 2014). In sidelight systems, 

consideration of height between floor and ceiling, implementation of light shelves, 

shading elements, properties of surfaces, and sloped ceilings determine the quality 

of the sidelight (Bainbridge & Haggard, 2011). In sidelight systems, increasing the 

ceiling and windows height of the space enhances daylight penetration. Light shelves 

reduce glare and provide a more directed distribution by reflecting the light to the 

ceiling and further away. A light shelf separates a side window into the top portion 

and the lower portion day (Boubekri, 2014). The top part is called a clerestory 

window, and the lower part is called the view window. They can be located in both 

the exterior and interior of the spaces. In order to reduce glare, exterior and interior 

lighting shelves can be combined. According to the desired effect in the space, the 

glare can be adjusted by changing the shelve in reflectance feature. Adding shading 

elements such as louvers, overhangs, and blind systems is also the strategy to adjust 

daylight and minimize the glare used in side lighting. The essential point in 

implementing these systems is to design to control the heat gain and daylight 
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penetration before or after entering the building by considering the climatic 

conditions and long-term usability (Phillips & Gardner, 2012). Increasing the 

inclination of the ceiling in the use of light shelve may result in the ceiling being 

lower than the windows and cause more light to reflect into the space. Figure 2.5 

shows the applications of side lighting strategies in the buildings. 

 

(a): John and Frances Angelos Law Center, Baltimore 

(Behnisch Architekten/Ayers Saint Gross) 

 

(b): Lewis Integrative Science Building, 

USA (HDR/THA Architecture; © 2013 

Lara Swimmer) 

 
(c): Research SupportFacility at the 

National Renewable Energy Laboratory, 

USA (LightLouverTM) 

 

Figure 2.5. Side lighting applications in buildings 

Another significant passive design technique is landscaping. Some vegetation offers 

building shade, cooling, and solar control during various seasons (Bainbridge & 

Haggard, 2011).  Leafy and tall plants provide shading in summer and block sunlight, 

while deciduous plants in winter allow daylight to reach places more easily. 
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Implementation of passive design strategies increases the use of daylight, reducing 

the need for artificial lighting. However, it does not only provide control for electric 

consumption but also its visual and non-visual effects affect occupants’ physical 

health, psychology, and productivity. In the next chapters, the visual and non-visual 

effects of daylighting on occupants and energy usage will be analyzed.  

2.2 Daylighting and Non-visual/ Visual Effects on Occupants 

2.2.1 Non-visual Effects of Daylighting on Occupants 

Health and well-being are significantly impacted by 24-hour rhythms (light-dark 

cycle), which dominate many areas of human psychology and behavior (Lockley, 

2009). This cycle affects people in many different ways, from the state of being 

awake or not to the secretion of the hormone melatonin. Furthermore, the 

cardiovascular, metabolic, immune, and skin systems depend on the light and dark 

rhythm to maintain physical and mental health (Veitch & Galasiu, 2012). Not only 

24-hour rhythms but also seasonal changes in daylight is effective on hormone cycles 

(Webb, 2006). Therefore, the non-visual effects of the daily and periodic changes in 

daylight should be considered while considering the daylight design. Daylight should 

be used in spaces, especially where efficiency in occupant production should be at 

the forefront (such as offices). Daylight has been proven effective in users' creativity 

and productivity. Poor lighting quality may negatively impact occupants' health, 

leading to stress and different problems, including visual discomfort, vision, or 

posture (Phillips & Gardner, 2012).  

2.2.2 Visual Effects of Daylighting on Occupants 

The visual effects of daylighting are associated with visual comfort, including vision 

and glare. Visual comfort means being free from sensitivity and distraction and is 

directly related to glare protection and view outdoors or indoors (Nasrollahi & 
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Shokri, 2016; Tabadkani et al., 2021). The CIE defines glare as a condition that may 

be uncomfortable or impair visual performance and visibility stemming from a lack 

of proper luminance distribution or high contrasts in the visual area (CIE, 1995). 

Glare does not necessarily have to cause discomfort or disability. If the glare results 

in a decrease in visibility, it is called 'disability glare'. However, if it only causes 

discomfort without affecting visual performance, it is called 'discomfort glare' 

(Iuliano et al., n.d.). Characteristics of daylight, including the sky conditions, 

intensity, and distribution, color may lead to glare problems (Nazzal, 2005). If 

daylight is integrated into the excessive interior, sunlight may create a glaring 

problem. Therefore, design phases should consider the visual effects of daylight 

since a good daylight design aim to offer adequate light for effective visual 

performance while guaranteeing adequate comfort (Wienold & Christoffersen, 

2006).  

2.3 Daylighting and Energy 

Rapid urbanization stems from a significant population shift from rural areas to 

cities, one of the century's significant problems (Ali et al., 2021; Ang et al., 2022). 

United Nations reported that whereas the people who live in urban areas are 30% of 

the total population, this ratio is expected to reach 68% by 2050 (United, 2018). It is 

predicted that the number of people living in cities will rise to 5 billion by 2030. 

While rapid urbanization promotes economic and social growth, it also increases 

energy demand and greenhouse gas emissions (W. Li et al., 2017). The rise in 

greenhouse gases will lead to drought, an increase in sea levels, climate change, and 

dangering living life and the existing ecosystem (Olabi & Abdelkareem, 2022). In 

developed and developing countries, buildings are one of the most significant 

greenhouse gas sources, as buildings’ energy demand represents almost 40% of the 

total energy of the cities (Argonne et al., 2017). In order to reduce GHG, the existing 

buildings’ energy demand should be reduced by considering energy-efficient 

strategies, and the new buildings should be designed to meet sustainable 
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requirements. Integrating multiple performance variables, including daylight, energy 

consumption, visual and thermal comfort with buildings, are necessary to meet 

sustainable goals (Evins, 2013). Lighting is responsible for energy usage, 

representing 20 percent of global electricity consumption (Waide & Tanishima, 

2006). Lighting energy consumption buildings account for approximately 11% of 

the total energy used in the building (Department of Energy, 2015). Several 

techniques are used to reduce energy demand, mainly changing the window type and 

shading elements and replacing the existing artificial lighting with more efficient 

lamps. (Mangan & Oral, 2016) applied different window alternatives for five 

climatic zones of Turkey to assess the residential building performance in Turkey. 

Similarly, Krarti (Bichiou & Krarti, 2011) changed the window types to optimize the 

building envelope. (Brandão De Vasconcelos et al., 2016) identified the retrofit 

scenarios, including changing window type, and calculated the primary energy 

demand for each scenario. Studies showed that changing the window types is an 

efficient retrofit scenario that decreases the energy usage for artificial lighting as it 

enhances the quality of the glazing element. 

The second strategy is the usage of shading elements. (Hamdy et al., 2013) tested 

different shading types to prevent summer overheating. Using efficient shading 

elements can be a beneficial strategy in terms of energy and cost. (Corrado et al., 

2014) applied different types of shading based on energy-efficient measures. Again, 

literature studies showed that the usage of efficient shading decreases overheating 

and energy used for cooling. Also, different types of shading (such as dynamic) can 

be used to adjust the daylight. Figure 2.6 demonstrates the different types of shading 

elements used in buildings. 
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Figure 2.6. Different types of shading elements (Kamal, 2010) 

The last strategy is changing the lighting equipment load by changing the lighting 

element. Standard incandescent heat lamps consume much more electricity than 

efficient LED lamps. Therefore, most studies deal with retrofit scenarios that change 

the lighting load per square meter in the literature. (S. Yang et al., 2016) showed that 

lighting power density is one of the most dominant factors affecting annual 

electricity usage. (Rackes & Waring, 2017)  used different distributions for lighting 

power density to simulate. Lighting power density is one of the most significant 

indicators of economizer savings. Literature studies showed that lighting retrofits are 

meaningful in carbon emission and energy demand reduction. Although alternative 

lighting retrofits are applied, the energy used for lighting is still substantial 

(Boubekri, 2014). Except for mentioned strategies, daylighting is a passive design 

strategy to reduce the lighting energy demand. The proper use of daylight as a free 

local energy source is essential (Dogan et al., 2012). Daylight penetrating the 

buildings is an effective energy-efficient strategy in terms of its influence on 

reducing electric lighting demand (Zhou & Liu, 2015). The reduction of electric 

lighting demand leads to less heat in the building provided by electric lighting 

(Tzempelikos & Athienitis, 2007); accordingly, the cooling demand of the building 

can be reduced. Daylight integration with buildings reduces the energy demand of 

the building and increases the health, productivity, and visual comfort of the 

occupants (Lockley, 2009; Webb, 2006).  
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However, dense urbanization prevents daylight access to the buildings. Each 

building act as a shadow element inheriting the daylight penetration of the buildings. 

Urban form parameters (street orientation and width, surrounding building heights 

and distances to the building, etc.) are highly influential on daylight access to each 

building (Saratsis et al., 2017). In the design stages, there is a need to analyze the 

relationship between context and buildings to benefit from daylight as much as 

possible.  

2.4 Factors that Affect Daylighting Illuminances 

Many factors affect daylight illuminance, which can be divided into external and 

internal parameters (Ayoub, 2020). External parameters are divided into climate 

conditions, temporal settings, and external obstruction parameters. Internal 

parameters are divided into physical features, openings, and shading devices. These 

parameters must be examined in detail and correctly given to the analysis models to 

make accurate and high-resolution daylighting analyses at an urban scale.  

External Parameters 

Climate condition refers to the location-dependent parameters. Global horizontal 

illuminance, direct normal, and diffuse radiation are one of the main climate 

parameters that affect daylight illuminances. The higher values of them result in 

higher daylight penetration to the buildings. 

Temporal settings refer to the time of the day and the day of the year. Depending on 

the month, the day, and the time of the day, the illumination level of the spaces 

changes with the change of the angle of incidence of the sunlight. 

External obstruction parameters (urban form parameters) include context buildings’ 

height, width, reflectance, and the distance between the context and the building 

itself. Urban morphology influences daylight penetration, solar radiation, and the 

view. Therefore, some environmental assessment schemes such as HK-BEAM (HK-

BEAM Society, 2004) and LEED (U.S. Green Building Council, 2008) evaluate the 
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influence of neighboring buildings on access to daylight and views by combining 

view and overshadowing performance (Fung & Lee, 2012).  Especially the location 

of the surrounding buildings determines how much daylight penetrates the buildings. 

If the surrounding buildings are parallel to the examined building, the daylight 

reaching the building is largely blocked (Munoz et al., 2014). As the angle of the 

surrounding buildings with the analyzed building increases, the daylight effects on 

that building decrease. Daylight penetrates much more into buildings that do not 

have close-range context buildings. The closer the surrounding buildings are to the 

analyzed building, the more they block the daylight. As the surrounding buildings 

move away from the examined building, their effects on the examined building 

decrease. The distance between buildings and the height difference between the 

surrounding building and the investigated building affects daylight penetration. An 

increase in the floor height of the surrounding buildings casts more shadow on the 

examined building and prevents daylight. 'Obstruction Angle' is calculated when the 

distance between the buildings and the relationship between floor heights are wanted 

to be examined simultaneously. The obstruction angle is the angle between the two 

lines indicating the distance between the two buildings and the difference between 

the end of the opposite building from the middle of the building's window. When the 

distance between buildings is constant, increasing the obstruction angle increases the 

shading effect of the opposite building. Southeast and southwest orientations 

are crucial for solar access in urban settings; therefore, the obstruction angle 

should preferably not exceed certain degrees by obstructions in this zone (Littlefair, 

2001). Also, the reflectance of the surrounding elements, including trees, buildings, 

and ground surfaces, is important as they act as reflective surfaces. A significant 

chunk of the overall radiation is received from the interreflections between the 

surfaces (Bugeat et al., 2019). The interreflections in the exterior surfaces with 

reasonable values improve the daylight conditions.  Darker surfaces absorb sunlight, 

while lighter surfaces reflect sunlight. The materials used on exterior surfaces in 

urban areas should also be carefully designed to prevent urban heat island formations 

and to control the sunlight reflected on the buildings. 
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Internal Parameters 

Building physical features parameters include geometrical properties of the 

building/room (width, length, height, width/depth ratio, area), the orientation of the 

building, and reflectances of building elements (wall, floor, ceiling). Geometrical 

properties of the building/room are important for penetrating daylight through the 

interior. The higher heights of the space mean higher daylight penetration to the 

building (O’Connor, 1997). Furthermore, long and narrow footprints are preferable 

to square ones for better daylight penetration. The shallower floor plans require less 

artificial lighting (Gadelhak, 2015). Also, for daylighting control strategies, deep 

facades should be designed. A facade with a certain depth can act as a shading 

element to block the sun (Figure 2.7). 

 

 

Figure 2.7. Deep-wall section to provide self-shading (O’Connor, 1997) 

Orientation of the building has a significant impact on both building energy 

consumption and daylighting control. Therefore, it must be considered in the early 

design stages to maximize the amount of beneficial natural light and sunlight 

penetrating the interior (Phillips & Gardner, 2012). Deciding on the proper 

orientation is essential for minimizing the amount of electricity used by artificial 

lighting, which is responsible for about 20% of the total energy consumption of 

buildings (Halonen et al., n.d.). North-facing windows are an efficient source of 

daylighting as most of the sunlight that enters a room from the north is indirect 
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throughout the year leading to a reduction in glare and heating. Therefore, the spaces 

should face north when constant lighting levels are needed. If adequate shading 

precautions are not taken, the excessive sunlight entering through south-facing 

windows can cause glare and discomfort to the eyes. 

Additionally, it may cause overheating, raising the need for cooling. The proper 

horizontal shading elements (overhang) should be implemented on the south faces 

to prevent glare and overheating. While east-facing windows get direct morning sun, 

west-facing windows receive sunshine in the afternoon. For east and west facades, 

louvers should be implemented as daylighting control strategies. Whereas the 

amount of south- and north-facing facade area are maximized, east, and especially 

west exposure should be minimized for the controllable daylight fenestration.  

Another important factor for daylight penetration is the reflectance of the surface 

elements; therefore, the color and texture of the interior and exterior surfaces should 

be designed properly. Surfaces with a light color reflect more light than dark-colored 

surfaces.  Specular surfaces like mirrors may lead to glare and visual discomfort. If 

the aim is to distribute daylight uniformly, reflected materials should be used in 

interiors.  However, reflected materials for the exterior can cause visual discomfort 

to surrounding buildings. Therefore, exterior and interior materials' reflectances 

should be properly considered. 

Openings and shading device parameters refer to the parameters related to glazing 

and shading elements. The properties of openings include geometrical properties of 

the window (WWR, window height, window width), orientation and location of the 

window, number of windows, visible transmittance value (VT), and Solar Heat Gain 

Coefficient (SHGC). WWR is the ratio between the window and wall area. Window 

area affects daylight penetration, heat gain, and loss.  In addition to increasing the 

amount of daylight, larger windows also result in more heat gain and loss. Therefore, 

windows with less visible transmittance should be preferred if larger windows are 

used. Windows can be vertical or horizontal, depending on the aspect ratio. 

Continuous strip windows provide uniformly distributed and adequate daylighting 

for a space (O’Connor, 1997). 
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On the other hand, punched windows prevent uniform daylighting distribution due 

to the gaps between them (Figure 2.8). Depending on the function of the space, such 

windows can be preferred, especially in working areas. Although vertical windows 

provide deeper daylighting access, they do not provide equal light distribution to the 

space. The aspect ratio of the windows should be carefully chosen according to the 

function of the space and the intended light intake. 

 

 

Figure 2.8. Strip windows vs. punched windows (O’Connor, 1997) 

The location of the windows is highly influential on daylight distribution, view, and 

glare. A daylighted zone's practical depth is normally constrained to 1.5 times the 

window's height, and it can be extended up to 2.5 times using a reflecting light shelf 

(O’Connor, 1997). High windows let more daylighted zone into the spaces for deeper 

spaces than the lower ones (Chartered Institution of Building Services Engineers 

[CIBSE], 1999). High windows can result in glare problems stemming from the 

skylight.  At this point, reducing window size reduces glare and energy costs. Visible 

transmittance (VT) is a fraction of the visible light transmitted through the glazing. 

A higher VT means more visible light. As the number of layers of the glazing 

increases (double, triple), the visible transmittance values decrease. The decrease in 

visible transmittance reduces the light transmitted into the space and affects the view 

quality. The solar heat gain coefficient (SHGC) measures how much solar radiation 

is transmitted or absorbed through a window. Lower SHGC means less heat 

transmitted. More heat is transported when the SHGC is higher, which is 

advantageous for capturing solar heat in the winter when it is undesirable in the 

summer (Feuermann & Novoplansky, 1998). The appropriate values of VT and 

SHGC vary depending on the space's location, orientation, and window size.  
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Shadings are systems that shade spaces from sunlight, guide natural light, shield the 

interiors from glare, and avoid overheating (Gherri, 2015).  The usage of adequate 

shading devices decreases energy consumption by preserving the needed daylighting 

illuminance levels for the space avoiding glare (Ye et al., 2016). A high amount of 

solar radiation can be prevented with the proper use of shading devices, which 

decreases the cooling load in summer and allows the penetration of the needed solar 

gain in winter.  Shadings can be classified based on their implementation: internal or 

external, and their operation type: fixed and mobile. Internal shading systems are 

mainly in the form of rollers, Venetian blinds, and easily adjustable curtains.  

External shading systems can be in the form of external solid or perforated shade 

devices. External shading systems can prevent most of the outside heat from entering 

a space; however, internal shading systems distribute the heat that has already 

entered the space (Figure 2.9).  

 

 

Figure 2.9. External shading systems vs. internal shading systems (Ye et al., 2016) 

 

Mobile shading devices include Venetian blinds, vertical blinds, and roller shades 

that can control sunlight based on the adaptation of variable factors, including solar 

radiation, indoor temperature, and illuminance level (Kirimtat et al., 2016). Fixed 

devices, including overhangs, horizontal/vertical louvers, and egg-crate, can not 

protect the space according to the dynamic relations arising from environmental 

factors such as daylight and solar radiation.  
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Shading devices provide daylight by preserving the necessary heat gain for spaces, 

and some of them can provide a view by preventing glare and leading to visual 

comfort for the occupants. Therefore, the proper integration of daylight with spaces 

should be carefully designed based on daylight requirements.   

2.5 Daylighting Performance Metrics 

This section examines the literature to evaluate daylight performance indicators. 

Daylight performance metrics are important tools for assessing the energy savings 

and the potential of natural light in a space.  There are several daylighting 

performance metrics shown in Table 2.1. However, a few metrics most commonly 

used to analyze indoor daylighting in the studies will be examined in detail. These 

metrics can be grouped under two main categories in terms of calculation methods 

which are Static Performance Metrics (Daylight Factor) and Dynamic Performance 

Metrics (Daylight Autonomy, Useful Daylight Illuminance, Daylight Availability, 

and Annual Sunlight Exposure (Bellia et al., 2017)).  
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Table 2.1 Daylighting Performance Metrics Classification based on the (Ayoub, 

2019a) study 

 Daylight Metrics  Direct Sunlight 

Metrics 

 Glare Indices 

S Daylight Factor D Annual Light Exposure D Glare Index 

D Daylight Autonomy D Sunlight Duration D Visual Comfort 

Probability 

D Continuous Daylight 

Autonomy 

D Sunlight Beam Index D CIE Glare Index 

D Maximum Daylight 

Autonomy 

D Annual Sunlight  

Beam Index 

D Daylight Glare Index 

D Minimum Daylight 

Autonomy 

D Annual Sunlight 

Exposure 

D CIE Unified Glare 

Index 

D Useful Daylight 

Illuminance 

  D Daylight Glare 

Probability (DGP) 

D Daylight Availability   D Simplified DGP 

D Frequency of Visual 

Comfort 

  D Enhance Simplified 

DGP 

D The intensity of Visual 

Comfort 

  D Unified Glare Rating 

D Spatial Daylight Autonomy   D Annual Visual 

Discomfort 

Frequency                         

 

S : static, D: dynamic 
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2.5.1 Static Performance Metrics 

Daylight Factor 

The oldest performance indicator is the ‘Daylight Factor’ introduced by Trotter in 

1895 (Walsh, 1951). Daylight Factor (DF) is the ratio of internal illuminance to 

external horizontal illuminance under an overcast sky defined by the CIE 

(Commission Internationale de l´Eclairage) luminance distribution (Tregenza, 

1980). Thus, the daylight factor (DF) is calculated by dividing the inside illuminance 

level by the outside illuminance level (Equation 2.1).  

𝐷𝐹 =  
𝐼𝑛𝑑𝑜𝑜𝑟 𝑖𝑙𝑙𝑢𝑚𝑖𝑛𝑎𝑛𝑐𝑒 𝑓𝑟𝑜𝑚 𝑑𝑎𝑦𝑙𝑖𝑔ℎ𝑡

𝐻𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 𝑢𝑛𝑜𝑏𝑠𝑡𝑟𝑢𝑐𝑡𝑒𝑑 𝑜𝑢𝑡𝑑𝑜𝑜𝑟 𝑖𝑙𝑙𝑢𝑚𝑖𝑛𝑎𝑛𝑐𝑒
× 100% 

Equation 2.1. Daylight factor calculation 

Also, as DF is composed of three main components, it can be calculated by summing 

the Sky Component, Externally Reflected Component, and Internally Reflected 

Component (Acosta et al., 2013). A representation of these components is given in 

Figure 2.10. Equation 2.2 shows the calculation of DF based on these three 

components. 

 

 

Figure 2.10. Components of natural light (Szokolay & Brisbin, 2004) 
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DF = SC + ERC + IRC 

SC – Sky Component 

ERC – Externally Reflected Component 

IRC – Internally Reflected Component 

Equation 2.2. Daylight factor calculation based on SC, ERC, IRC 

CIE defined the sky component as the daylight factor produced only by the sky 

luminance, excluding the reflectance of the inner surfaces (CIE, 2011). In other 

words, the sky component represents the ratio of daylight falling on a vertical surface 

to the daylight available under an unobstructed sky.  

Externally reflected component refers to the light reflected from external surfaces 

such as surrounding buildings, trees, and grounds (Fakra et al., 2011). The 

reflectance of the surroundings, including the ground surface and external 

obstructions, directly affects the externally reflected component (Mohelnikova & 

Hirs, 2016).  

Internally reflected component refers to the light that reaches a reference point 

from reflections inside the space. Daylighting in interiors is affected by room 

geometry, colors, and surface patterns leading to inter-reflections directly 

influencing internally reflected components (Mohelnikova & Hirs, 2016; Singh & 

Rawal, 2011).   

Daylight Factor provides quick feedback on how much daylight can be expected for 

the space. However, there are several limitations of DF. It can not represent the 

change in illumination levels indoors stemming from temporal variation of sky 

luminance and ignores the effects of building orientations, which directly influence 

daylighting illuminances (Kota & Haberl, 2009).  Even though there are modified 

versions of the DF method to analyze the effect of different sky conditions (clear sky 

& sunlight), these methods ignore the dual effect of reflected sunlight from both 
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ground and obstruction (Alshaibani, 1999). Furthermore, it does not give an idea 

about the glare caused due to daylight.  

2.5.2 Dynamic Performance Metrics 

Illuminance 

Daylighting refers to the illumination of spaces by daylight delivered through 

openings, and this illumination may stem from direct sunlight, skylight, or reflected 

light (Knoop et al., 2020). Figure 2.11 illustrates the components of daylighting.  

 

Figure 2.11. Components of daylighting (Roy, 2014) 

Except for the feeling of the space, daylight should be considered a design element 

to achieve a certain illuminance level that which function of the space requires. 

Illuminance can be described as the amount of light falling on a surface. Each 

different activity type requires different illuminance levels. Table 2.2 shows 

recommendations of the IESNA (Illuminating Engineering Society of North 

America) for the different activities and their required illuminance values (IESNA, 

2000). 
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Table 2.2 IESNA recommendations for specific tasks 

Task Illuminance 

Reading 30 

Meeting Rooms 300 

Classrooms 300 

Office Spaces (intensive computer tasks/ 

variety of tasks) 
300/500 

Fine Machine Work 3000-10000 

 

Also, IESNA and CIBSE (Chartered Institute of Building Services Engineering) 

have recommendations for the illuminance values of residential spaces (CIBSE, 

2013; IESNA, 2007). Table 2.3 shows the recommended illuminances for residential 

spaces.  

Table 2.3 IESNA and CIBSE recommendations for illuminance values of 

residential spaces (lux) 

Task IESNA 2007 CIBSE 2013 

Hall 100 200 

Lounge 300 - 

Kitchen 300 200 

Dining/Living Room 300 200 

Bathroom 300 150 

Bedroom 300 100 

Stairs 300 100 
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Daylight Autonomy 

Daylight Autonomy (DA) is a dynamic performance metric proposed in 1989 by the 

Association Suisse des Electriciens (Association Suisse des Electriciens, 1989). It 

represents the percentage of the annual occupied timesteps when the minimum 

illuminance threshold is met by daylight alone (Reinhart & Walkenhorst, 2001). It is 

a climate-based metric that considers the various sky conditions and facade 

orientations. Higher DA value results in less usage of electric lighting.  DA300lx 

[50%] can be expressed as the percentage of the work plane area that receives 

daylight above 300 lux for at least 50% of the annual time (Bian & Ma, 2017). 

Required minimum illuminance levels (thresholds) for different spaces can be 

directly taken from various documents, including the IESNA Lighting Handbook 

(IESNA, 2000).  

Later on, several modified versions of DA were developed. Continuous Daylight 

Autonomy (cDA) indicates the illuminance falls below the minimum illuminance 

threshold considering a partial credit linearly to values below the threshold defined 

(Reinhart et al., 2006). Minimum Daylight Autonomy is the percentage of occupied 

time when an illuminance threshold can be met by daylight alone under continuous 

overcast sky conditions (Acosta et al., 2019). Maximum Daylight Autonomy is the 

percentage of the annual occupied timesteps when the illuminance level exceeds ten 

times a predefined threshold (Rogers & Goldman, 2006). 

The usage of modified versions of DA is not wide as the use of DA; however, they 

can be helpful in certain cases. Recently, a new metric was proposed called Spatial 

Daylight Autonomy (sDA) by IESNA (Illuminating Engineering Society of North 

America). Spatial Daylight Autonomy (sDA) is a measure of daylight illuminance 

sufficiency for a given area, reporting a percentage of floor area that exceeds a 

specified illuminance level (e.g., 300 lux) for a specified amount of annual hours 

(IESNA, 2012). Illuminating Engineering Society of North America (IESNA) 

defined this threshold as 300 lux for 50% of all occupied hours (sDA300/50%), and the 

sDA300/50% threshold is referenced in both the LEED (Leadership in Energy and 
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Environmental Design) (Council, 2013) and WELL (Institute, 2020) building 

certification systems (Turan et al., 2020). Therefore, it is an important daylighting 

performance indicator for sustainable design.  It allows for evaluating the space for 

one year regarding the sufficiency of daylight illuminance. sDA considers both 

temporal and spatial dynamics of daylight in buildings (Kazanasmaz et al., 2016).  

Useful Daylight Illuminance 

Useful Daylight Illuminance (UDI) is defined as the percentage of the annual 

occurrence of illuminances across the work plane where all the illuminances are 

within the range of 100-2000 lux (Nabil & Mardaljevic, 2005). Later, UDI is 

redefined as a percentage of the occupied time during the year when the illuminance 

value is between 100 and 3000 lux (Mardaljevic et al., 2012). Then, the UDI range 

is further subdivided into two main categories: UDI-supplementary and UDI-

autonomous. UDI-supplementary shows the presence of daylight illuminances in the 

range of 100 to 300 lux. In this range of illumination, additional artificial lighting 

can be required to ensure the necessary daylight for common tasks such as reading 

and drawing. UDI- autonomous gives the occurrence of daylight illuminances in the 

range of 300 to 3000 lux, where extra artificial lighting will probably not be required. 

Including these two main categories, the UDI range is divided into five sub-

categories: 

 UDI fell-short (UDI-f) represents the percentage of the occupied time where 

illuminance is less than 100 lux. 

 UDI supplementary (UDI-s) represents the percentage of the occupied time 

where illuminance is more than 100 lux and less than 300 lux. 

 UDI autonomous (UDI-a) represents the percentage of the occupied time 

where illuminance is higher than 300 lux and less than 3000 lux. 

 UDI combined (UDI-c) represents the percentage of the occupied time where 

illuminance is higher than 100 lux and less than 3000 lux. 
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 UDI exceeded (UDI-e) represents the percentage of the occupied time where 

illuminance exceeds 3000 lux. 

UDI gives more information about assessing visual comfort and thermal discomfort 

than daylight autonomy metrics (Ayoub, 2019a). Furthermore, UDI gives an idea 

about the percentage of occupancy hours in which oversupply of daylight happens, 

and insufficient daylight occurs by indicating lower and upper thresholds (Yu & Su, 

2015). 

Daylight Availability 

Daylight Availability is a dynamic metric proposed by (Reinhart & Wienold, 2011) 

to combine Daylight Autonomy and Useful Daylight Illuminance as a single 

indicator. It is represented as fully daylit, partially daylit, non-daylit, and overlit 

(Ayoub, 2019a). If illuminances exceed 300 lux for at least 50% of the annual 

occupied timesteps, it is indicated as fully daylit (DAv300/50%) (Reinhart, Rakha, & 

Weismann, 2014). Partially daylit reports the illuminances above 150 lux for at least 

50% of the annual occupied timesteps (DAv150/50%). Overlit calculates the 

illuminances that exceed ten times the target illuminance for at least 5% of the annual 

occupied timesteps (DAv3000/5%), giving an idea about possible visual discomforts 

(Reinhart & Wienold, 2011).  

Annual Sunlight Exposure 

Annual Sunlight Exposure (ASE) is a direct sunlight metric that provides a second 

dimension of daylight analysis, looking at one potential source of visual discomfort: 

direct sunlight (IESNA, 2012).  ASE indicates visual discomfort and the amount of 

direct sunlight the workplace receives annually. When ASE is used with spatial 

daylight autonomy, it provides a meaningful understanding of how a space should 

be designed for adequate and good daylighting in terms of visual comfort. According 

to the LEED v4 ( (2022 U.S. Green Building Council, n.d.), no more than 10% of 

space should have direct sunlight of more than 1000 lux for a maximum period of 

250 hours per year (ASE1000/250).  
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In summary, each daylighting performance metric provides information about 

daylighting performance from different perspectives; some represent how much the 

space is illuminated above certain values during the year, and some represent the 

space area that is illuminated as much as certain illumination values.  Dynamic 

performance metrics are specific analyzes obtained by calculating illuminance 

values. Illuminance is the rawest data among these metrics, and its calculation is also 

associated with areas such as energy use related to daylighting. 

2.6 Daylighting Calculation Methodologies 

In this section, the daylighting calculations used in the literature were given in detail. 

Throughout history, several methods have been proposed to calculate daylighting 

performance metrics. Mainly, these can be categorized into six groups: graphical 

methods (diagrams, charts, tables), non-graphical methods (protractors, daylight 

factor calculator), analytical formulas, scale models, computer simulations, and 

machine learning (ML) models (Kazanasmaz et al., 2009; Kota & Haberl, 2009).  

2.6.1 Graphical Methods 

Waldram and Waldram developed one of the first graphical methods attempts in 

1923 to estimate the ‘Sky Component’ (Waldram & Waldram, 1923).  Waldram 

Diagram graphically enables to representation of the amount of light from the sky at 

any particular point within a room (Defoe, 2016). In 1954, the pepper-dot chart 

method was produced by Pleijel to calculate the sky component for the standard CIE 

sky (Hopkinson, Petherbridge, & Longmore, 1966). Turner developed a similar 

method in 1969 to estimate sky components by using charts consisting of a pattern 

of dots (Fuller, 1985). In 1980, the ‘Graphic Daylight Design Method’ was proposed 

by Millet to represent the daylight factor by contours for the overcast sky (Millet, 

Adams, & Bedrick, 1980). Later, the proposed methodology was extended to 

represent a clear sky (Fuller, 1985).  
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2.6.2 Non-graphical Methods 

Non-graphical methods include protractors and daylight factor calculators (Ayoub, 

2019a). Protractors calculate the sky component of the daylight factor (Dufton, 1946) 

by dividing the sun path projections into solar hours (Ne’eman et al., 1976). It was 

developed to simplify daylight calculation and make it possible to measure daylight 

directly from architectural drawings (Bryan & Carlberg, 1985).  

2.6.3 Analytical Formulas 

Analytical formulas calculate different daylight components such as daylight factor, 

internally reflected component, and externally reflected component (Kota & Haberl, 

2009). In 1928, Frühling developed the Lumen Method to forecast the DF with 

mathematical formulas (Frühling, 1928). However, the biggest shortcoming of this 

method was ignoring the daylight stemming from an externally reflected component. 

In 1954, Dresler extended this methodology to integrate with internally reflected 

components requiring intensive measurements (Dresler, 1954). To develop this idea, 

Arndt developed a new formula to consider internally reflected components without 

requiring intensive measurements. Later on, based on Arndt’s formula, the split-flux 

method was developed by Hopkins, Longmore, and Petherbridge (Hopkinson et al., 

1954). The split-flux method considers the reflections from external obstructions. 

Tragenza modified this formula to involve large vertical obstructions (Tregenza, 

1989). The split-flux method works well with a certain geometry but is unsuitable 

for complicated geometries. In 1979, the ‘Average Daylight Factor’ was proposed 

by Lynes (Lynes, 1979), requiring fewer parameters than the daylight factor, 

including opening size, shape, and position to extract information about the ratio 

between average internal and external horizontal illuminance for an overcast sky. 

The calculation methodologies mentioned above evaluate static metrics such as DF 

ignoring the changing weather conditions, orientation, and location. Therefore, in 

1983, Tregenza & Waters (Tregenza & Waters, 1983) proposed ‘Daylight 
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Coefficient’ as a dynamic method to reflect the effects of variable conditions.  The 

proposed methodology can consider different sky conditions, orientations, and 

locations.  

2.6.4 Scale Models 

Other attempts to calculate daylight inside buildings are scale models, which are the 

physical representation of buildings to assess daylighting performance. This method 

examines how daylight behaves within a small-scale model of a planned building 

under different sky circumstances to provide insight into how daylight would 

probably behave if the building in question were built (Ngarambe et al., 2022). The 

ratio of the scale models varies from 1:8 to 1:32 (Kazanasmaz et al., 2009). One of 

the biggest challenges of this method is to represent the building realistically. 

Finishing materials, interiors, and reflections of surfaces should be matched with the 

real buildings (Littlefair, 2002).  In order to avoid unwanted light penetration, the 

location for measurements should be chosen correctly. Ensuring the mentioned 

guidelines is challenging; therefore, these models have lost their usefulness over time 

(Thanachareonkit et al., 2005). Figure 2.12 shows examples of scale models. 

 

Figure 2.12. Scale models for daylight penetration (Bodart et al., 2007) 



 
 

41 

2.6.5 Computer Simulations 

Traditional daylight calculation methods only consider the standard overcast sky 

without accounting for the various sky conditions. Furthermore, they are not useful 

for evaluating different design alternatives, including orientation, window types, and 

shading elements. It is worth noting that the methodologies described above 

(graphical methods, non-graphical methods, analytical formulas, and scale models) 

are insufficient for providing extensive assessments of daylighting performance. On 

the other hand, computer simulations allow designers/architects to evaluate a more 

extensive analysis to estimate daylighting illuminance inside buildings. Furthermore, 

they are easy-to-use design tools as they help optimize the use of daylight in 

buildings. Various design alternatives can be evaluated by using simulations in terms 

of daylight. Evaluating the visual performance and energy efficiency with the use of 

daylight considering the changing conditions (location, orientation, climate) is 

possible with computer simulations. Climate-based daylight modeling (CBDM) 

helps to predict any luminous quantity (illuminance/luminance) on grids using 

realistic sky conditions retrieved from representative climate data of the specific 

location at specific temporal resolutions (Mardaljevic, 2006; Reinhart & Herkel, 

2000). Computer simulations enable the calculation of daylighting metrics based on 

climate-based modeling. There are many computer simulation tools to analyze 

daylighting performance metrics. These can be categorized under two groups based 

on illuminance calculation methods: radiosity and ray-tracing techniques 

(Kazanasmaz et al., 2009).  

The radiosity method is based on dividing the room surfaces into a mesh of polygons, 

and for each divided part, the direct light is calculated (Chartered Institution of 

Building Services Engineers [CIBSE], 1999). This process is continued until the 

reflections between each polygon are measured. In this method, each element can 

receive light from it, which means each element act as a light source (Ashmore & 

Richens, 2001).  This method assumes all surfaces are perfectly diffusing. There are 

some limitations to the usage of the radiosity method. Firstly, this method requires a 
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meshing process to divide each surface into smaller ones, which takes much 

computational time. Secondly, even though specular reflectance and complex 

models can be simulated, they require much memory. Finally, as it assumes all 

surfaces are perfectly diffusing, the transparency effects of surfaces cannot be 

modeled easily. Delight (Hitchcock & Carroll, 2003) and Lightscape (Autodesk, 

2000) are computer simulation programs based on the radiosity method.  

The ray-tracing method calculates the visibility of surfaces by following light rays 

from the viewer's eye to the rendered scene's elements (Muneer & Beliveau, n.d.). A 

projection center, also called the viewer's eye, and an arbitrary view plane is chosen 

to render the scene on a plane. The ray follows the geometry of the reflection or 

transmission of the surface to the following surface if the surface is specular or 

transparent. The light received at the intersection point from the sources is calculated 

if other elements do not hinder the ray, and this process continues until the specified 

number of rays is attained (Chartered Institution of Building Services Engineers 

[CIBSE], 1999). There are two different ray-tracing methods: backward ray tracing 

and forward ray tracing. In a forward ray-tracing technique, rays are traced from the 

light source to the eye position. On the other hand, in a backward ray-tracing 

technique, a ray is followed back from the eye position until it reaches a surface.   

The developed computer algorithms enable to trace of millions of rays to manage 

high-resolution renders. Unlike the radiosity technique, the ray-tracing technique can 

consider the specular reflectances and transparency effects and deal with complex 

geometries (Muneer & Beliveau, n.d.; Ward & Rubinstein, 1988). Figure 2.13 shows 

the rendering based on the raytracing (left) and radiosity (right) methods.  
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Figure 2.13. The rendering of a room based on the raytracing (left) and radiosity 

(right) method (Niedenthal, 2008) 

Most simulation programs, including RADIANCE and GENELUX, are used for 

daylighting and electric calculation based on the ray-tracing technique (Muneer & 

Beliveau, n.d.).  

There are several simulation programs used for daylighting and energy analysis of 

buildings. The most common simulation programs used will be covered.  

RADIANCE is essentially a rendering engine developed by Lawrence Berkeley 

Laboratory (LBL) in California and the Ecole Polytechnique Federale de Lausanne 

(EPFL) in Switzerland (Ward, 1994). It uses ray tracing and offers comprehensive 

lighting analysis. The software employs backward ray tracing, which works with 

specular, diffuse reflections and complex, curvilinear geometry to produce effective 

rendering outcomes under many circumstances. Additionally, it mixes different ray-

tracing methods, such as deterministic and stochastic, to balance between speed and 

accuracy of the rendering results. It is free software and a plugin that can be 

embedded with another program. RADIANCE is used by architects/designers for 

extensive daylighting analysis, including indoor illuminations, visual quality, and 

implementation of new lighting technologies. However, even though the software 

provides comprehensive lighting analysis, the use of the program is not easy to learn.  
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DAYSIM is a RADIANCE-based daylight simulation tool that performs dynamic 

simulations under various sky conditions using daylight coefficients (Reinhart & 

Walkenhorst, 2001). Unlike RADIANCE, DAYSIM uses daylighting coefficients 

based on Tregenza (Tregenza & Waters, 1983). With a single run, the program can 

easily deal with complex geometries. The outcome of the simulation results is 

extensive, including annual illuminance results, dynamic performance metrics, and 

glare indices (Ayoub, 2019a). Researchers prefer DAYSIM to predict indoor 

illuminances under different sky conditions. It is a stand-alone program; however, it 

can work with other programs such as EnergyPlus, Ladybug, and Honeybee. It is an 

open-source and accessible tool.  

DIVA (Design Iterate Validate Adapt) is a plugin for the Rhinoceros 3D Nurbs 

modeling (Becker & Golay, 1999). Also, it is a simulation tool to integrate 

daylighting and thermal simulations (Jakubiec & Reinhart, 2011). Based on 

daylighting analysis, lighting schedules are created and can be shared with the energy 

simulation to calculate lighting energy demand based on daylight. It can be 

integrated with RADIANCE and DAYSIM (Reinhart & Walkenhorst, 2001). The 

plugin is mostly used for research as it has a cost except for educational purposes.   

Energy Plus is a building software program to calculate the energy demand of 

buildings (Drury et al., 2000).  It gives information about the buildings' heating, 

cooling, and lighting demand. The outcome can be given daily, monthly, seasonally, 

or annually based on user selection (Crawley et al., 2001). The program can be 

integrated with other programs, such as DAYSIM, and RADIANCE, to provide a 

more comprehensive daylighting analysis. For example, for accurate lighting energy 

demand analysis based on daylighting, the schedules created by DAYSIM are shared 

with Energy Plus, and Energy Plus calculated lighting energy demands based on 

these schedules.   

Ladybug & Honeybee, developed by Ladybug Tools, are parametric plugins that can 

be integrated with 3D programs such as Rhino. They also can be integrated with 

RADIANCE, DAYSIM, and Energy Plus. As they are free and have straightforward 
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usage, they easily enable designers to estimate energy predictions, daylighting 

calculations, and their visualizations.   

Climate Studio has been recently developed by Solemma LLC for daylighting and 

energy modeling. It enables users to perform different analyses, including 

calculating climate-based daylighting metrics, glare analysis with varying time 

solutions, thermal zone energy, and load estimations.    

2.6.6 Machine Learning Models 

During the early design stages, computer-based simulations were a crucial part of 

daylight modeling. As mentioned above, numerous daylight simulation tools have 

been created over the years and are now commonly used in study and practice. 

Compared to the above-discussed scale models and analytical formulas, the current 

technologies offer a more detailed analysis. However, users must run simulations for 

several combinations of variables, especially for multi-objective optimization 

analyses, making it time-consuming to simulate complex buildings and select 

various parameters to maximize daylighting efficiency (Ngarambe et al., 2022). The 

simulations' results may vary depending on the level of modeling detail and the users' 

expertise.  Machine learning algorithms employ data to learn correlations and 

patterns between the output and input parameters. After learning these patterns, the 

model may be used to predict the output variables under different 

circumstances.  When an ML algorithm is sufficiently trained, it can be used to 

determine the most suitable combination of design parameters required for better 

daylighting performance. This property of ML algorithms offers a practical solution 

to the earlier discussed methods' limitations (time-consuming, requiring modeling 

knowledge and expertise) of daylight estimation in the design stages.   

ML models reduce computation time based on learning patterns between input and 

output parameters (M. I. Jordan & Mitchell, 2015). Although machine learning 
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models have many capabilities for predicting daylighting within buildings, the use 

of machine learning in daylighting studies is relatively new (Ngarambe et al., 2020). 

ML algorithms that vary depending on the type of training data, the order, and the 

method, mainly include supervised learning, unsupervised learning, semi-supervised 

learning, reinforcement learning, transductive inference, on-line learning, and active 

learning (Rostamizadeh & Talwalkar, n.d.). Supervised learning is one of the most 

used learning types in ML models. It requires a set of labeled data to train the model. 

The most common problem types in ML models, including regression, classification, 

and ranking, are associated with supervised learning. In classification problems, 

outputs are specific categories predicted from inputs, whereas regression models 

give output as real-valued labels (Rostamizadeh & Talwalkar, n.d.). Studies related 

to daylight predictions in literature can be divided into two based on task: regression 

and classification problems. Regression is used when the desired result consists of 

one or more continuous variables (M. Jordan et al., n.d.). In daylight studies, 

regression tasks are mostly preferred for predicting illuminance values, DF, DA, 

sDA, cDA, ASE, and DGP. For regression problems, ANN (Artificial Neural 

Network), DT (Decision Tree), SVM (Support Vector Machine), MLR (Multilinear 

Regression), and RF (Random Forest) algorithms are mostly chosen.  The most 

preferred model is ANN. The ability of ANNs to learn complex relationships 

between features has made them the primary choice in complex problems in 

daylighting prediction. 

Studies that used ANN evaluated their models on four performance metrics 

mentioned in the following chapters: R2, MAE, MSE, and RMSE. Based on 

performance metrics, hyperparameter tuning is applied in some studies by changing 

the number of hidden layers, the number of neurons, epoch size, learning rate, and 

activation functions. Table 2.4 shows some of the analyzed works. Among the 

studies reviewed, R2 reached a maximum of 0.99 (Ngarambe et al., 2020). However, 

this study only estimates the hourly illuminance values per room scale grid point. It 

can not predict illuminances by considering urban form parameters and spaces of 

different sizes and orientations. In studies where more inputs such as urban form, 
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location, and building properties are given to the model, the problem becomes more 

complicated, and as a result, performance values may decrease (Ayoub, 2019b; Han 

et al., 2021). Therefore, studies also can be analyzed in terms of their resolution. The 

studies are handled at grid or space resolution. Although the grid resolution works 

(Kazanasmaz et al., 2009; Ngarambe et al., 2020) are in high resolution, their 

usability on an urban scale remains limited. Most of the analyzed studies (Lorenz & 

Jabi, 2017; Zhou & Liu, 2015) in the literature are on a spatial scale. However, many 

of them ignore urban form parameters. In the studies examined, the estimation 

performance of the study model, which is closest to the urban scale and considering 

the external obstruction form parameters, varies between R2 = 0.87 and 0.9 (Ayoub, 

2019b). However, in this study, although the relationship with the surrounding 

buildings has changed, the examined zone has always remained constant; that is, the 

analysis of multi-dwelling buildings on an urban scale has not been addressed. Table 

2.5 shows the inputs used in daylighting prediction studies. Urban form parameters 

include obstruction width, height, angle, material reflectance, and distance from 

obstruction. However, Sky Exposure (SE), the visible sky ratio that includes the 

surrounding buildings, is not included in studies. It is an indicator of light availability 

in dense urban areas (J. Zhang et al., 2012); therefore, it can be used as an urban 

form parameter in daylighting prediction studies. 

Most of the studies in the literature focus on public or commercial buildings’ 

illumination instead of residential buildings. According to (Dogan & Park, 2019) 

study findings, 73% of the studies on climate-based daylighting metrics analyzed 

offices, while only 27% focused on residentials. Therefore, there is a need to increase 

the daylighting prediction studies and methods of residential buildings in the 

literature. 

Studies also can be grouped into two in terms of data collection: field measurements 

and simulation-derived data. Field measurements take much more time than 

simulation to collect the necessary data. At the same time, it is not possible to quickly 

reproduce field measurements or record new values obtained with changing design 

parameters. Data generation with simulation is produced faster than field 
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measurements. However, the accuracy of the data produced here also depends on the 

modeling detail and the expertise of the modeler. Daylighting prediction studies also 

can be evaluated in terms of their temporal resolution. There can be predicted for 

selected time series or annual/hourly basis.  

Table 2.4 Some of the studies using ML models to predict daylighting performance 

metrics 

Reference Problem  Model  Building Type Output      Performance 

(Le-Thanh et al., 

2022) 

Regression ANN NS UDI R2= 0.89* & 0.78** 

(Han et al., 

2021) 

Regression ANN office  UDI & DA R2= 0.98 & 0.96 

MAE= 1.58 & 1.37 

MAPE=2.10% & 

2.36% 

(Ngarambe et 

al., 2020) 

Regression DNN  

RF 

GB 

NS Illuminance R2 = 0.99 & 0.92 

(Ayoub, 2019b) Regression MLR residential  sDA & ASE R2= 0.87 & 0.98 

MSE = 5.28 & 

8.13% 

(Lorenz & Jabi, 

2017) 

Regression ANN office  DA MSE = 0.0005 

(Zhou & Liu, 

2015) 

Regression 

Classificati

on 

ANN  

SVM 

NS Illuminance  

UDI 

Accuracy: 96.35* 

& 62.15** 

(Kazanasmaz et 

al., 2009) 

Regression ANN office  Illuminance IPE = 2.17% 

(Kurian et al., 

2006) 

Regression ANN NS Illuminance RMSE = 0.13–

1.12% 

 

* indicates the highest performance result in the study 

** indicates the lowest performance result in the study 
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Table 2.5 Input parameters used in daylighting prediction models 

Climatic 

Condition 

Temporal 

Settings 

External  

Obstruction 

Building  

Physical 

Features 

Openings  

& Shading 

Global 

horizontal 

radiation 

Time of the 

day 

Obstruction 

width 

Width WWR 

Direct 

normal 

radiation 

Day of the 

year 

Obstruction 

height 

Length Window height 

Diffuse 

horizontal 

radiation 

Solar 

Altitude 

Obstruction 

length 

Height Window width 

UV Index Solar 

Azimuth 

Obstruction 

angle 

Orientation Orientation of the 

window 

UV dose Solar 

Declination 

Obstruction 

material 

reflectance 

Sensor point 

identification 

Number of windows 

Exterior 

Horizontal 

Beam 

Illuminance 

Solar Hour Distance from 

obstruction 

Distance from 

windows 

Window sill height 

Horizontal 

Infrared 

Radiation 

Intensity 

  Reflectances of 

surface materials 

Transmittance value 

(VT) 

   Work plane height Solar Heat Gain 

Coefficient (SHGC) 

   Width/depth ratio Shading devices 

parameters 

   Area  

   Indication of floor   
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2.7 Electric Lighting Energy Consumption Calculations 

Most of the energy used worldwide and the CO2 emissions produced from this 

energy are attributable to buildings. The quantity of energy used by buildings in 

America and Europe accounts for 40% of all energy utilized, and the amount of CO2 

emissions resulting from this usage accounts for about 38% of all emissions (Zhao 

& Magoulès, 2012). Therefore, buildings have a significant potential to reduce global 

energy consumption (Amasyali & El-Gohary, 2016). This leads to the prediction of 

building energy consumption gaining importance for improved decision-making for 

reducing energy demand and associated CO2 emissions (Amasyali & El-Gohary, 

2018).  

Therefore, forecasting building energy use has recently received much attention. 

Several attempts are used to calculate building energy consumption. However, 

studies that estimate specifically electric lighting consumption is a few (Amasyali & 

El-Gohary, 2016). According to the Amasyali & El-Gohary review study, only 2% 

of the analyzed studies reviewed predicted lighting energy consumption, and most 

of the work that predicts lighting energy consumption is for non-residential buildings  

(Amasyali & El-Gohary, 2018). There is a substantial lack of development of 

prediction models for lighting energy consumption based on daylighting in 

residential buildings in the literature. 

There are two main approaches for calculating building lighting energy 

consumption: physical modeling and a data-driven approach (Amasyali & El-

Gohary, 2018). Physical modeling is based on detailed modeling and analysis, which 

can be done using simulations. Different simulation tools can calculate artificial 

lighting energy consumption in buildings. UMI (Urban Modelling Interface), 

proposed by Reinhart et al. (2013), is an urban simulation interface that can calculate 

daylighting illuminance and integrate it with energy simulations. The other popular 

approach is Building Information Modeling (BIM) enables intercorporate lighting 

schedules and energy simulations and performs detailed analysis (Mahgoub, M.H., 

2020). Climate Studio, developed by Solemma LLC, provides a comprehensive 
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analysis of the building's advanced daylighting, artificial lighting, and energy 

analysis. The integrated use of RADIANCE and DAYSIM, and EnergyPlus enables 

the calculation of the amount of electricity used for lighting in buildings, considering 

the daylight. However, even though these approaches enable users to estimate 

detailed performance analysis, they can be used by only experienced people. Also, 

getting extensive results requires a high level of modeling detail and much 

computational time. Especially considering variable occupant profiles and urban 

form parameters are computationally very high to calculate lighting energy 

consumption using simulations.  

Contrary to the physical modeling approach, data-driven prediction models learn 

from available data to predict lighting consumption instead of requiring detailed 

energy models. Several ML models have been used to predict electric lighting energy 

consumption, including ANN, SVM, decision trees, and other ML algorithms. ML 

models make predictions using historical data, if available, measured field data, or 

data produced by simulations. Electricity data used for illumination is not available 

hourly, so it is not possible to estimate electric illumination energy consumption 

based on existing data in hourly resolution. Measurement data made at certain 

intervals is specific to where it is made. In machine learning models based on data 

produced by simulation, data can be produced parametrically by considering variable 

parameters. Studies generally used the simulation data obtained by creating certain 

simulation setups as a data set in the ML model (Aydinalp et al., n.d.; Wong et al., 

2010). However, the simulation data obtained are the lighting energy consumption 

data provided over the energy models. Even though a few studies take daylighting 

parameters into account, they ignore the use of artificial light depending on 

daylighting illuminance levels and the calculation of lighting energy consumption, 

taking this into account.  

In addition to the studies mentioned above, mathematical formulas are used to 

calculate energy use for artificial lighting in different temporal solutions. The hourly, 

daily, or annual lighting energy consumption of a place can be calculated in kWh/Wh 

using the information about the power of artificial lighting used, how many hours it 
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is used, and the illuminated space area.  These calculations remain basic without 

enabling analysis based on daylighting illuminance at an urban scale. 

2.8 Gaps in the Literature 

Daylighting studies in the literature have been analyzed in many aspects, such as 

daylighting performance metrics, factors that affect daylight illuminances,  

daylighting calculation methods, different ML models, and features used in 

prediction studies. Accordingly, the shortcomings identified in the analysis of indoor 

daylighting illuminance are listed as follows: 

o Generally, studies treat the space where daylighting analysis is made as a 

single zone without considering external parameters. In the dense urban 

fabric, the daylighting of the buildings is hindered by the surrounding 

buildings. Surrounding buildings can block the light to the examined building 

to a certain amount, cause more light to be reflected on themselves, causing 

more illumination of the examined building, or completely block the 

daylight. Therefore, indoor daylighting analysis of an urban-scale space can 

not be handled independently of the surrounding buildings. Even if it is 

handled, it will lead to erroneous analysis results. Also, climatic parameters 

are highly influential on daylighting illuminance, so the studied space can not 

be considered independently of its location. Climate parameters vary 

depending on the location. The external parameters (external obstruction and 

climate condition parameters), together with the internal parameters, should 

be considered during daylighting analysis.  

o Most studies deal with the daylighting analysis of non-residential buildings 

(offices, schools, e.g.). Indoor daylighting illuminance analysis of residential 

buildings is rarely included. Moreover, the analysis of multi-dwelling 

buildings on an urban scale has not been addressed. Units on various floors 

may be lit differently despite having the same physical properties. Because 

of the daylighting reflected from the surrounding buildings, the illumination 
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of the interiors may not rise in a correlated way with floors, in this case, 

complicating the analysis of indoor daylighting. Due to reflected lights, a 

downstairs area could be more well-lit than an upstairs area. Therefore, 

methods for analyzing indoor daylighting for multi-dwellings on an urban 

scale should be developed. The lack of daylighting analysis of residential 

buildings is also considered a shortcoming in review studies (Ayoub, 2020). 

o Most studies that developed ML models considered specific daylighting 

performance metrics and estimated these metrics with ML models. Although 

these metrics give meaningful results for the daylighting analysis of the 

space, they are calculated differently in each, and this difference makes it 

impossible to compare the studies with each other. Estimating and analyzing 

absolute illuminance values in high resolution instead of these metrics allows 

comparative analysis of studies with each other (Ayoub, 2020). Other 

illuminance-dependent studies are also provided by estimating absolute 

daylighting illuminance. One can calculate the amount of electricity used 

during daylight. A technique for this, though, has not yet been covered in the 

literature. In order to examine electrical lighting usage based on predicted 

daylighting illuminance, a complete method that uses ML models to forecast 

indoor daylighting illuminance is required. Without considering daylighting, 

urban energy consumption estimation models provide inaccurate findings by 

either underestimating or overestimating electricity demand. Inaccurate 

calculations of electrical illumination consumption in urban energy models 

indirectly result in incorrect calculations of heating and cooling energies.  
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CHAPTER 3  

3 A METHOD FOR THE PREDICTION OF INDOOR DAYLIGHTING 
ILLUMINANCE ON AN URBAN SCALE 

This chapter presents the development of a method for the urban scale prediction of 

indoor daylighting illuminance. The method can estimate the indoor daylighting 

illuminances on an urban scale at an hourly solution using ML models. The 

developed method enables daylighting analysis at hourly resolution considering 

building and external parameters. The method was developed by exploring different 

machine learning models, revealing how data-driven models can be used in urban-

scale daylight analysis. After the method was developed, possible areas that can be 

used on the urban scale depending on daylighting were also discussed as a research 

topic. It has also been explored that the developed method can calculate the lighting 

electricity consumption of residential buildings on an urban scale depending on 

daylighting and different occupant profiles. The method is based on four steps that 

are (i) 3D model development, (ii) simulation-based data generation, (iii) 

development of prediction models, and (iv) lighting energy use calculations. In Step 

(0), 3D model development, the studied area is modeled to be ready for simulation 

by gathering data from different sources and producing them when there is no 

available data. In Step (ii), simulation-based data generation, hourly illuminance 

values are obtained from annual simulations. Step (iii), development of prediction 

models, presents how different ML models were trained with simulated data and the 

comparison results of models’ performances. In Step (iv), electric lighting energy 

use calculations, the methodology to calculate electric lighting energy use is 

described based on predicted illuminance results and different occupant profiles. 

Figure 3.1 shows the proposed methodology for the development of the method. 
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Figure 3.1. An overview of the proposed methodology 

3.1 3D Model Development 

The data required for 3D modeling is divided into three main groups: geometric, 

non-geometric, and climate data. Figure 3.2 shows the 3D model development 

process. These data exist in different formats from different sources. It is aimed to 

keep the data in a single database to be given to the model.  

Geometric data includes building layouts, floor numbers, unit division of buildings, 

and window/wall ratio information. The building layout information of the 

Bahçelievler district was obtained from the Turkish Ministry of Environment and 

Urbanization as a 2D file. Floor numbers were recorded by looking at Google Images 
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of the buildings examined.  It is necessary to know how many units are on each floor 

to divide the buildings into units. Information on how many units are in the buildings 

was obtained from the Civil Registration and Citizenship Affairs (NVI) website. The 

total number of units obtained for each building was divided by the number of floors, 

and the number of flats per floor was calculated. Window/wall ratio information was 

requested to be obtained from the EPC (Energy Performance Certificate) queried 

from the BEP-TR page of the Turkish Ministry of Environment and Urbanization. 

However, there is no EPC for every building. Therefore, the existing EPCs were 

collected, and the window/wall ratios obtained from them were reconstructed for all 

buildings by applying the distribution. Distributions are obtained from the project 

funded by the Scientific and Technological Research Council of Turkey under grant 

number TUBITAK 120M997. 

Semantic data includes only Visible Transmittance (VT) information under this 

model. General data of VT are available in different ranges for different glass types 

in the ISICAM catalog. From these ranges, they are reproduced for all buildings by 

distribution based on the VT values of the glass types suitable for use in residential 

buildings. 

Climate data is taken from Climate One Building (https://climate.onebuilding.org/) 

with .epw extension. The typical meteorological data of Ankara, Central location 

covering the years 2004-2018 were taken. 

Box plots showing the distribution of input features are given in Appendix A.  
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Figure 3.2 3D model development process 

3.2 Simulation-Based Data Generation 

The average daylighting illuminance data to be used in ML models were produced 

by simulations. Also, simulations are utilized to calculate one of the input parameters 

used in ML models: ' Sky Exposure'. 

3.2.1 Daylighting Illuminance Calculation 

Building simulations are performed using Honeybee plugins of DAYSIM and 

RADIANCE to obtain daylighting illuminance values. Information regarding the 

zone to be examined, the surrounding buildings, and the resolution at which the 

analysis will be conducted (grid, annual, etc.) must be provided to calculate the 

daylighting illuminance values. In order to enhance the accuracy of the results, 

various settings of the simulation can be edited. In this study, RADIANCE settings 

were set up for this purpose. Mainly, there are five settings for radiance parameters: 

ab (ambient bounces), aa (ambient accuracy), ar (ambient resolution), ad (ambient 
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divisions), and as (ambient super-samples). These values are described by 

RADIANCE developed by Lawrence Berkeley National Lab for four conditions: 

minimum values, fast simulations, accurate results, and maximum values that input 

can be taken. For the scope of the study, parameters are chosen for accurate results. 

Table 3.1 shows these parameters and their values.  

Table 3.1 Radiance settings used in the study 

 Accurate 

Ambient Bounces(ab) 2 

Ambient Accuracy(aa) 0.15 

Ambient Resolution(ar) 128 

Ambient Divisions(ad) 512 

Ambient Super-

Samples(as) 

256 

 

Moreover, weather files and analyzed test points must be given to the model. The 

weather file is given as input in .epw format. Test points should be generated for 

each simulated zone. In the study, ten buildings in a parcel of Bahçelievler, Ankara, 

a total of 119 units are simulated. Since daylighting simulations are computationally 

expensive, each unit is considered a single zone without room division. Each zone is 

divided into 2 m grids. These grid points are elevated on the z-axis of 0.762 m, which 

is generally accepted as the height of the work plane area in the literature. The 

illuminance values for each point were calculated hourly throughout the year. The 

average value of the obtained values is taken for each zone and is given to the ANN 

model to be trained.  

3.2.2 Sky Exposure Calculation 

The effect of the surrounding buildings on the examined building at the urban scale 

was obtained by calculating the Sky Exposure (SE). This calculation examines the 

visible sky ratio by including the surrounding buildings as context from the center 
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point of the windows located in four directions in the zones. A Sky Exposure of 100 

indicates that any building opposite does not block the zone. As the effect of the 

context buildings increases, the sky exposure, that is, the rate of visible sky 

decreases. This parameter is calculated in four directions for each zone and given as 

input to the ML models. Figure 3.3 diagrammatically shows the calculation method 

of SE.  

 

Figure 3.3 Sky exposure calculation 

 

For the reader’s information, in the study, it is assumed that surrounding buildings 

are made of the same material; as a result, their reflectivity is the same. Reflectivity 

characteristics should be considered if it is wanted to compare material variations. 

3.3 Development of Prediction Models 

Machine learning models require a set of predictor and target variables. Within the 

scope of this thesis, the regression models are used to predict the average illuminance 

value (lux).  Climate conditions and external obstruction parameters were selected 

external parameters. Building physical and opening features were used as internal 

parameters. The inputs were selected after studying related inputs examined in the 



 
 

61 

literature to forecast average illuminance accurately. A summary of the input 

variables and descriptions is given in Table 3.2. 

Table 3.2 Summary of Input Variables and Descriptions 

 Predictor 

Group 

Description Input Name Unit 

Internal 

 

Building 

Physical 

Features 

Indication of floor  z-axis - 

The ratio between the 

width and length of the 

units 

Aspect ratio - 

The ratio between the 

total window area and 

total floor area of units 

TotalWindow/ 

TotalFloorArea 

- 

Opening 

Features 

WWR in 4 directions wwrNorth 

wwrWest 

wwrSouth 

wwrEast 

% 

External 

External 

Obstruction 

Sky Exposure in  

Four directions 

SENorth 

SEWest 

SESouth 

SEEast 

% 

Climate 

Condition 

Global  

Horizontal Illuminance 

Global Horizontal 

Illuminance 

lux 

 

Inputs required for the ML models are WWR in four directions, information on the 

unit's floor, aspect ratio (width/length ratio), sky exposure calculation in four 

directions, visible transmittance (VT), and global horizontal illuminance. The 

information of all values except Global Horizontal Illuminance is taken from the 

created 3D model. Hourly GHI data is obtained from the weather file with the .epw 

extension. A database is created by saving these data on Google Colab. After the 

database is created, data is given to the ML models. The flow of the development of 

ML learning models is also given in Figure 3.4.  
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Figure 3.4. The flow of the development of ML models 

3.3.1 Data Preprocessing 

Preprocessing converts the original data into a format the prediction model can use. 

There are several data processing techniques, including handling null values of the 

dataset, data reduction, scaling the data, and splitting the dataset. In this study, the 

obtained dataset was checked for null values , and no null values were found. The 

input features discussed in this study are the parameters known to be effective on 

daylighting illuminance in the literature. Therefore, no data reduction was made in 

the selected parameters, and it was desired to train the estimation model using all 

parameters. Since each input given to the model is in very different value ranges 

from each other, giving these values to the model as it is will cause the model to 

show biased results. All data were scaled to the range of [0, 1] using the Min-Max 

Scaler. After the data set was scaled, it was divided into three subgroups to make it 

ready for the model. 
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ML models require three main subsets of original datasets: train data, test data, and 

validation data. A training set refers to examples used for model learning (D. Ripley, 

2008). A validation set is a set of examples used to tune the parameters of a model. 

The test set is a set of examples used only for the unbiased evaluation of the final 

model. In the study, the data is split into 70% and 30% as train and test data. 50% of 

the test data is reserved as validation data. 

3.3.2 Model Training 

At the scope of the thesis, the ML-based design method that can analyze the hourly 

indoor daylighting illuminances and calculate the electric lighting use based on these 

illuminances is developed. For the development of the method, three different ML 

models are utilized: MultiLayerPerceptron (MLP) (Anil K. & Jianchang, 1996), 

Random Forest (RF) (Breiman, 2001), and XGBoost (XGB) (Chen & Guestrin, 

2016). Models are developed and trained with the same data. The structures of the 

models are shown in Figure 3.5.  

Artificial Neural Networks (ANNs) 

ANN involves artificial neurons to identify and store information, which resembles 

the way neurons in the brain work (Das & Roy, 2019). Although its structure 

resembles that of neurological neurons in the brain, ANN has only one type of 

connection connecting one neuron to another. ANN consists of input and output 

layers and hidden layers of neurons consisting of units that convert input into output.  

Each neuron has different weights, and its influence on the output layer depends on 

their weights. The neurons can receive input signals and send them to other layers 

by processing the weights and biases (Z. Zhang, 2018). Activation functions 

determine the output of given inputs.  One of the most widely used ANN designs is 

the Multilayer Perceptron (MLP). 
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Random Forest (RF) 

An ensemble method called random forest combines the predictions of various tree 

predictors in a forest (Breiman, 2001). Each tree in the forest depends on the values 

of a random vector sampled individually. The method is known as 'random forests' as 

the ensemble's fundamental components are tree-structured predictors built 

with randomness (Segal, 2003). The predictions are based on combining multiple 

trees instead of a single tree. Several trees in the forest are combined for predictions, 

and the estimations are provided by averaging the results of each tree. Estimating by 

averaging the prediction results of several trees in the forest, instead of a single tree, 

results in more reliable results when compared to single tree methods, considering 

the diversity. 

eXtreme Gradient Boosting (XGBoost) 

A tree-boosting method called XGBoost constructs new models regularly depending 

on estimated errors and then merges them into an ensemble model (Chen & Guestrin, 

2016).  XGBoost is scalable, unlike conventional gradient boosting techniques, 

which help prevent the model from overfitting. XGBoost combines all scaled 

predictions from all trees by learning errors from previous trees. One of the biggest 

achievements of the technique is parallel and distributed computing which speeds up 

learning and makes model exploration possible more quickly. XGBoost can be 

utilized for both regression and classification problems. 

The generated dataset was utilized for training three different ML models. The 

architectures of models vary because of the chosen parameters. In Section 3.3.4, it 

will be thoroughly described what each parameter utilized in each model represents. 

Initially, the MLP model included four layers. Each layer receives a ReLU (Sharma 

et al., 2020) activation function.  Using the ReLU required scaling the inputs between 

0 and 1. Adam was chosen with a learning rate of 0.001. The tuning of these 

parameters follows, as will be covered in Section 3.3.4 in more detail. The models 

were directly implemented using the sklearn library without specifying the RF and 

XGBoost parameters. Then, these models' parameters were tuned. 
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Figure 3.5 The structures of the ML models 
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3.3.3 Model Evaluation 

In order to evaluate the performances of the ML models, four different performance 

metrics are calculated: Mean Absolute Error (MAE) (1), Mean Squared Error (MSE) 

(2), Root Mean Squared Error (RMSE) (3), and Coefficient of Determination (R2) 

(4). Their equations are indicated below.  
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1
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1

𝑁
෍(𝑦௜ − 𝑦ො)ଶ

ே

௜ୀଵ

 

 

 𝑅ଶ =  1 −
∑(𝑦௜ − 𝑦ො)ଶ

∑(𝑦௜ − 𝑦ො)ଶ
 

 

where 𝑦ො represents the actual value and 𝑦௜ is the predicted value. 

After the ML models were trained, their performance was compared. With the 

highest R2 score (0.733), the best XGBoost model performed the estimation. Then 

came the RF model with 0.713 and the MLP model with 0.669. Although the 

performance values of the models are in the range of the performance values of the 

studies examined in the literature, the performance of the models has remained below 

many studies. The graphs (Figure 3.6) of the actual and predicted values calculated 

(2) 

(3) 

(4) 

(1) 
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by the models were analyzed, and it was seen that the MLP and XGBoost models 

could not predict values above a certain value (3000 lux). After re-examining the 

original dataset, it was determined that the non-uniform distribution of the data may 

lead the ML models not be able to predict values above a certain value.  

Model   

MLP 

R2 = 0.669 
 

 

RF 

R2 = 0.713 
 

 

XGBoost 

R2 = 0.733 
 

 

Figure 3.6 The graphs of the actual and predicted illuminance values 

 

It has been analyzed that almost all of the outputs in the original data set are between 

0-2000 lux.  
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Data augmentation was implemented to increase the performances of the ML models 

by enhancing the diversity of the value range of data seen by ML models. Data 

augmentation is a method to increase the amount of data by adding newly created 

synthetic data from existing data. Data augmentation is proposed to increase the 

diversity in the data set and expand the distribution ranges so that the models can 

better learn the values at the extremes.  For data augmentation, the new data was 

reproduced with simulations. The produced data are not representative of the current 

situation. The data representing the current situation was named the V1 (base) 

scenario. The V1 scenario represents the data created in Section 3.2.1. New scenarios 

have been produced to expand the distribution ranges of the data. Table 3.3 shows a 

total of four different scenarios (V1, V2, V3, V4) created and the inputs that change 

depending on these scenarios. 

Table 3.3 Proposed scenarios for data augmentation 

 V1(Base 

Scenario) 

V2 V3 V4 

Window-to-Wall 

Ratio 

0- 0.36 0- 0.36 0- 0.36 0- 0.9 

Visible 

Transmittance 

0.17- 0.55 0.17- 0.55 0.6- 0.9 0.17- 0.55 

Context Shading Included The heights of the 

contexts scaled to 0.5 

Included Included  

 

In the V1 scenario, the WWRs are formed from the distributions obtained from the 

existing EPCs, and the windows in four directions take values between 0 and 0.36. 

VT is again created by distribution, and values between 0.17-0.55 are taken. In this 

scenario, context buildings are modeled with real floor heights. 

In the V2 scenario, only the floor height parameter of the surrounding buildings is 

changed so that the machine learning models can better learn the relationship 

between the SE values and the illuminance. The illuminance values for the analyzed 
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buildings are recalculated by 0.5 scale heights of the surrounding buildings. Other 

parameters (WWR, VT) are kept constant. 

The V3 scenario represents the situation where the VT values are increased. The 

surrounding buildings are modeled with their real heights, and the WWR includes 

the values produced for the base scenario in the first place. 

Finally, the WWR value ranges were expanded in the V4 scenario. Although there 

is no window/wall ratio of 0.9 in Bahçelievler, the maximum value has been 

increased to 0.9 for machine learning models to learn the effect of WWR on 

illuminance better.  

Introducing all the new data generated by simulations to the model would not be 

suitable for increasing data distribution. Therefore, a new dataset was created by 

adding only the data in the less represented range (2000 and above) to the first 

generated data (V1 scenario). Statistical descriptions of all data are given in 

Appendix B. After the final dataset was created, it was given to the ML models to be 

trained. Figure 3.7 shows the initial estimates of the models with the generated 

dataset. With the new dataset produced, the performance of all three models has 

increased significantly.  
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Model   

MLP 

R2 = 0.923 

MAE = 0.008 

MSE = 0.001 

RMSE = 0.022 

 

 

RF 

R2 = 0.916 

MAE = 0.008 

MSE = 0.001 

RMSE = 0.023 

 

 

XGBoost 

R2 = 0.914 

MAE = 0.01 

MSE = 0.001 

RMSE = 0.023 

 

 

Figure 3.7 The graphs of the actual and predicted illuminance values with the 
generated dataset 

 

3.3.4 Hyperparameter Tuning 

There are two types of parameters in ML models (Kuhn & Johnson, n.d.). One is 

model parameters, which may be set up and updated during learning from data. The 

second is referred to as ‘hyperparameters’. Hyperparameters are the parameters that 
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adjust the model's performance and vary in different ML models. They should set 

before training an ML model to increase the model's learning capacity, leading to an 

increase in model performance. Therefore, hyperparameters are used in different 

configurations to design optimal model architecture, and this is called 

‘hyperparameter tuning’ (L. Yang & Shami, 2020).  Proper hyperparameter tuning 

should be adjusted to increase the model's performance and avoid problems, 

including underfitting or overfitting. The selected ML models and tuned 

hyperparameters are given in Appendix C.  

Different hyperparameter configurations are used for different ML models. For MLP 

models, batch_size, epoch_size, learning_rate, and number_of_neurons are used as 

hyperparameters, and their different configurations are evaluated. The batch_size 

refers to how many samples are used in each iteration. The epoch_size defines how 

often the entire training set is seen from the network. The study defines epoch size 

as constant using the ‘early stopping’ method. Early stopping is a regularization 

strategy to prevent overfitting that stops the model training by observing the accuracy 

gap between training and validation data. It is also useful to reduce the computational 

time of the training (Goodfellow et al., n.d.). The learning_rate modifies the step 

size at each iteration.  A high learning rate can lead the loss function to behave in an 

undesired divergent way, while a low learning rate can lead the model to 

progress slowly. Therefore, different options for learning should be tuned properly.  

Except for these parameters, different hyperparameters are used in MLP models, 

including activation functions and optimizers. Activation functions are the functions 

that determine the output of a given node. Several activation functions are used for 

different ML models, such as Linear, Sigmoid, Tanh, ReLU, Leaky ReLU, 

Parametrized ReLU, Exponential Linear Unit, Swish, and Softmax. They can be 

implemented in input and hidden layers based on the aim of the ML problem and can 

be tuned to improve the model's performance. At the scope of the study, for the MLP 

for a regression model, ReLU is used in input and hidden layers. ReLU is rectified 

linear activation function that gives output as a positive if the input is positive, 

whereas the output is concluded as 0 if the input is negative (Sharma et al., 2020). 
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Therefore, the range of input values given to the model should be in [0,1] for ReLU 

usage. Accordingly, in the study, before being given to the ML model, inputs are 

scaled to range from [0,1]. Optimizers specify how the learning rate or weights of 

the neuron should alter to minimize losses. Several optimizers are applied in ML 

models, including Gradient Descent (Cauchy, 1847), Stochastic Gradient Descent 

(Robbins & Monro, 1951), AdaDelta (Zeiler, 2012), and Adam (Kingma & Ba, 

2014). Adam is one of the most preferred optimizers as it achieves better results with 

high speed than other optimizers. At the scope of the study, Adam is chosen as an 

optimizer for MLP, and its learning rate is tuned to choose the best performance. 

For RF, number_of_estimators, max_features, max_depth, min_samples_split, 

min_samples_leaf, bootstrap are tuned hyperparameters. number_of_estimators 

represents the number of trees in the forest. max_features defines the number of 

features for the best split and can be assigned as ‘auto, sqrt, log2, None’. In the 

studied RF model, max_features is defined as ‘auto’, representing the situation 

where the number of max features equals the number of features. max_depth defines 

the depth of the trees. The parameters determining the minimum number of instances 

needed to form a split and a leaf node are min _sample_split and min_samples_leaf.  

Bootstrap determines whether the entire dataset is used as is or with specific 

bootstrap samples used in building trees. 

For XGBoost , n_estimators, max_depth, min_child_weight, gamma, learning_rate, 

subsample and colsample_bytree are tuned hyperparameters. n_estimators is the 

number of trees in XGB. max_depth represents a tree's maximum depth, limiting 

how deep each tree can grow. The increase in the parameters leads the model to 

overfit more likely. min_child_weight is the minimum sum of instance weight that a 

child needs. Gamma shows the lowest loss reduction necessary to create a new 

partition on a tree leaf node. learning_rate is the regularization parameter. The 

subsample is the ratio of subsamples in a training sample to grow a tree. The 

parameter colsample_bytree specifies the proportion of features (columns) used to 

construct each tree.    
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There are two types of hyperparameter tuning: manual and automatic search (Wu et 

al., 2019). Manual search requires hyperparameters' manual setting. It can be used if 

the person who developed the model is experienced enough to predict which 

parameters will affect the model approximately and how much. On the other hand, 

automatic search is based on exhaustive searching, including grid and random 

search. In order to train the model, a grid search can explore all combinations of a 

given value of hyperparameters. Oppositely, random search combines given 

hyperparameters randomly, not all of them. Even a random search can not give the 

best results as it does not try all the given combinations, it has less computational 

cost than a grid search. The study applies the random search method with the cross-

validation method.  

Cross-validation is a technique that uses various subsets of the original data rather 

than just one on each iteration. If only a portion of the original dataset is used, it 

might not accurately represent the entire dataset, leading to biased results. 

Consequently, in a random search, ‘nested-cross-validation’ is used (Figure 3.8). In 

this method, the original dataset is split into five identical parts, and the number of 

iterations is set to 50. The methodology produces unbiased outcomes since it 

considers all data rather than just a specific subset. The models with the highest 

performance were selected as the final models due to hyperparameter tuning, and 

their performances were compared. Analysis of the architecture of the ML models 

and their performance as a result of hyperparameter tuning is given in Section 4.1.  
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Figure 3.8. Nested cross-validation 
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3.4 Electric Lighting Energy Consumption Calculations 

Task

Predicted Average 
Illuminance Results

XGBoost Model

Lighting Fractions

Convert
 to

Occupancy schedules

Reference

Lighting Power (W/m2)

Multiply 
with

XGBoost Model

(Mardaljevic et al., 2011)

(Malekpour Koupaei et al., 
2022)

(S. Yang et al., 2016)

Predicted electric lighting 
energy consumption (W/

m2)

Multiply 
with

The proposed 
methodology

 

Figure 3.9 The flow of the electric lighting energy consumption calculation 

Electric lighting use consumption requires three inputs: lighting fractions obtained 

from predicted daylighting illuminances, occupant presence schedules, and lighting 

power density (W/m2). Figure 3.9 demonstrates the flow of the electric lighting 

energy consumption calculation. 

Lighting fractions at hourly resolution represent the rate at which artificial lighting 

is turned on, depending on daylighting. The fact that the lighting fraction is equal to 

zero indicates that the space is sufficiently illuminated; therefore, artificial lighting 

is unnecessary. The situation where the lighting fraction is equal to one represents 
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that the space is not illuminated at all, and the artificial lighting must be turned on 

completely. The study conducted a comprehensive literature search to determine 

how the predicted daylighting illuminance values obtained from the ML model can 

be converted into lighting fractions to calculate electrical lighting consumption. As 

a result, an equation has been obtained to create lighting fractions based on 

daylighting in residential buildings. This equation was obtained by analyzing the 

relationship between daylighting illuminance and lighting fraction values in the 

reference source (Mardaljevic et al., 2011). The lighting fraction values depending 

on the daylighting illuminance values of the reference study examined are given in 

Table 3.4 and Figure 3.10. The values given by this study are taken from the equation 

proposed to calculate the electricity consumption of the RT 2005 residential model 

in France. 

Table 3.4 Parameterisation of the lighting fraction in the RT 2005 Model 

(Mardaljevic et al., 2011)  

Daylighting 

Illuminance(lux) 

Lighting 

Fraction 

0 1 

100 1 

200 0.05 

2800 0 
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Figure 3.10. Electric light switch-on probability as a function of daylight 

illuminance (Mardaljevic et al., 2011) 

Different equations were created depending on the reference for the four ranges (0-

100, 100-200, 200-2800, 2800, and above) determined in the reference, and the 

equations were converted to lighting fraction values by applying the equations 

according to the ranges of predicted daylighting illuminance values.  

Obtained lighting fractions based on daylighting illuminance are hourly values 

multiplied hourly by occupant presence. The aim here is to calculate the lighting 

fraction not only depending on the daylighting but also based on the occupant's 

presence.  Electric lighting use correlates directly to the number of occupants living 

in the house. Accurately modeling the number of occupants living in the house and 

their situation of being at home correctly is important for electric lighting use 

calculations.  The discrepancy between the simulated/predicted and actual energy 

consumption stems from inadequate consideration of occupant behavior in urban 

building energy models resulting in a performance gap (Happle et al., 2018).  There 

are occupant presence schedules created by Energy Plus to be used in energy models 

(Figure 3.11). However, these created schedules do not change according to the 

number of households; they are the same for all households.  
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Figure 3.11. Standard midrise apartment occupant presence schedule obtained from 

Energy Plus (Department of Energy) 

Creating an occupant presence schedule depending on the number of changing 

households will increase the diversity of occupants and allow to reflect the current 

diversity in the calculation of the electric lighting consumption to be calculated 

accordingly. A literature review was conducted to consider the different occupant 

profiles, which vary according to the number of households in calculating electric 

lighting energy use. For residential buildings, a reference (Malekpour Koupaei et al., 

2022) was found with occupant presence schedules that change according to the 

number of households and days (weekdays, Saturdays, Sundays). The occupant 

presence schedule values were obtained from the graphics of this reference. The 

graphics produced by the reference are based on the 2019 American Time-Use 

Survey (ATUS) data. The produced values of the occupant schedules that vary 

according to the number of different households and days are shown in Figure 3.12. 

The data in the source used is based on regularly collected American occupancy 

research data. Due to privacy considerations, it is highly challenging to find occupant 

data, particularly in residential buildings. For the reader's information, the chosen 

reference (Malekpour Koupaei et al., 2022), which varies depending on the 

household sizes and days of the week, is the most varied reference for residential 
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buildings. In future studies, if data representing Bahçelievler for residential buildings 

can be found, the data can be easily replaced with the data here.  

 

 

Figure 3.12. Generated occupant schedules based on (Malekpour Koupaei et al., 

2022) 

The generated occupant schedules are assigned according to the number of 

households in the units. The household information is taken from TUIK (Turkish 

Statistical Institute) data. Figure 3.13 shows Turkey's household numbers 

distribution according to TUIK data. 
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Figure 3.13. The household size for Turkey based on TUIK, 2021 data statistics 

Household numbers are assigned to each unit according to their distribution. The 

occupant presence schedules created above according to the households are assigned 

to the units whose number of households is known. 

Lighting fractions produced based on daylighting were multiplied by the occupant 

presence schedules. The obtained value should be multiplied by the energy (lighting 

power) consumed per square meter by the artificial lighting used in the space. These 

values are assigned as different values for each unit. Lighting power density values 

were produced uniformly in the range of 12-19 W/m2, according to a study found in 

the literature (S. Yang et al., 2016). The scatter plot of the generated values is shown 

in Figure 3.14.  

 

Figure 3.14. The scatter plot of generated values for lighting power density (W/m2) 
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U.S. Green Building Council recommended 11.8 W/m2 for rooms in residential 

buildings (U.S. Green Building Council). For the reader's information, since the 

lower limit of the reference selected in the literature (Yang et al., 2016) coincides 

with the recommended value, the ranges of values are referenced to form a 

distribution. The selected lighting power densities obtained within the scope of the 

study and the electric lighting consumption values calculated accordingly are 

consistent within themselves. However, different types of lamps (especially energy-

efficient lamps) were not considered in the study. The lamps selected in the study 

are lamps with low performance and are not energy efficient. When it is desired to 

work with lamps with high energy efficiency, the lighting power density of 6.5 W/m2 

recommended by ASHRAE for residential buildings can be taken as a reference 

(ASHRAE, 2021). When the studies using energy-efficient lamps in the literature 

are examined, it is observed that the lowest limit for lighting power density value is 

2.5 W/m2 (Ahmed & Asif, 2020).  

The equation calculates the electrical lighting per square meter, and multiplying this 

result by the total square meter of the area gives the total amount of lighting energy 

used.  The results of each unit's electrical lighting energy consumption will be 

detailed in Chapter 4.   
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CHAPTER 4  

4 RESULTS 

The results of the proposed methodology in Chapter 3 are given in this chapter. 

Results are reported under two main sections. The first section presents the 

architecture and comparative performance results of the selected models as a result 

of hyperparameter tuning in Section 3.3.4. The impact of each input on predicting 

the daylighting illuminance of the models is also discussed here.  The second section 

reports the electrical lighting consumption data calculated in the first section based 

on the method proposed in Section 3.4.  The thesis aims to observe the calculated 

electrical lighting consumption by considering the effect of surrounding buildings 

(urban form parameters). Therefore, in this section, the proposed methodology was 

applied to the different datasets in which context buildings are excluded from the 

data, and electrical lighting energy use consumption was calculated accordingly. The 

electrical lighting energy use consumption data was calculated with two different 

scenarios, with and without the surrounding buildings, and analyzed comparatively.  
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4.1 Performances of Utilized ML Models for Daylight Illuminance 

Prediction  

Three different ML models were developed to solve the regression problem defined 

in the study (daylighting illuminance prediction), and their parameters were tuned to 

increase their performance. Table 4.1 shows the final parameters of the three utilized 

ML models.  

Table 4.1 The descriptions of the final predictive models 

Model Description 

MLP Neural Networks 

MLP Regressor 

Hidden_layer_sizes = [64,64] 

learning_rate = [0.002] 

batch_size = [1024] 

RF Ensemble Models 

Random Forest Regressor 

n_estimators = [50] 

max_depth = [54] 

min_samples_leaf = [1]  

min_samples_split = [20]  

XGBoost Ensemble Models 

XGBoost Regressor 

n_estimators = [300] 

max_depth = [5] 

min_child_weight = [1] 

gamma = [0.4], 

learning_rate = [0.8]  

subsample = [0.8] 

colsample_bytree: [0.8] 
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Different ML models were tuned with different hyperparameters. Figure 4.1 shows 

the actual and predicted illuminance values using tuned models.  

The final MLP model contains two hidden layers with 64 neurons, a 'ReLu' activation 

function in each layer, and an 'Adam' optimizer. Compared to the initial model before 

tuning, the R2 values increased from 0.923 to 0.9236, and the error values remained 

almost the same. MLP model shows higher accuracy and lower error at lower 

learning rates in the given hyperparameter range. However, the MLP model has 

shown the least increase in model performance after hyperparameter tuning.  

The final RF model showed better performance compared with MLP. R2 of the RF 

model increased from 0.916 to 0.928. While the MAE value remained the same, 

MSE and RMSE values decreased in the tuned model.  

The highest increase in performance was observed in XGBoost due to 

hyperparameter tuning. The R2 value for XGBoost increased from 0.914 to 0.942. 

Among the three models, XGB had the highest R2. Therefore, XGB was used when 

calculating the electrical lighting consumption based on daylight in Section 4.2. 
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Model   

MLP 

R2 = 0.9236 

MAE = 0.009 

MSE = 0.0004 

RMSE = 0.022 

 

 

 

RF 

R2 = 0.928 

MAE = 0.008 

MSE = 0.0004 

RMSE = 0.021 

 

 

 

 

XGBoost 

R2 = 0.942 

MAE = 0.01 

MSE = 0.001 

RMSE = 0.022 

 

 

 

 

Figure 4.1 The performances of hyperparameter-tuned models 
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4.1.1 Discussion 

In the literature, studies that developed an ML model that predicts the illuminance 

value were examined, and the results of the proposed method were compared with 

these studies. Using different datasets and models makes a one-to-one comparison 

of results impossible, but results based on studies can be interpreted. In the studies 

examined, the most successful study in estimating the illuminance value was the 

Deep Neural Network, and the R2 value of the model was 0.99 (Ngarambe et al., 

2020). This value indicates a very high forecasting performance. When the input 

parameters of the study were examined, it was observed that the external obstruction 

form parameters were not included, while the parameters of the climatic conditions 

were given in detail. In this case, the effect of surrounding buildings on daylighting 

is ignored. When the effect of the surrounding buildings is ignored, the model's 

performance is expected to be higher. When the surrounding buildings are not 

included, the illuminance values are expected to increase regularly as the upper 

floors are climbed, and the south façade receives more light directly. However, 

considering the surrounding buildings, each apartment in the building may illuminate 

differently, unexpectedly, due to reflections in the surrounding buildings. Therefore, 

considering surrounding buildings is a much more complex problem for the machine 

learning model to learn. In the study within the scope of the thesis, the R2 = 0.942 

value of the prediction model is within the scope of a high accuracy value, 

considering both external (climatic conditions, external obstruction parameters) and 

internal parameters. 

In the study, the uneven distribution of the dataset results in poorer prediction 

performances of ML models. As mentioned in Section 3.3.4, the fact that the data 

concentrated in a certain range and became representative of the whole data set led 

the model to predict values that are not in this value range with lower performance. 

It has also been stated in studies in the literature that data augmentation improves the 

performances of ML models (Olu-Ajayi et al., 2022). Therefore, data augmentation 

was applied in this study. For data augmentation, new scenarios are proposed to vary 
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the data distribution. The purpose of the suggested novel scenarios is to broaden the 

distribution of inputs in the data set and, by exposing the ML model to more data, to 

improve prediction accuracy. It has been observed that the performance of the 

models, which are retrained with the data, augmented with the proposed scenarios, 

has increased significantly compared to the initial situation. By obtaining the R2 

=0.94, no further data augmentation was made in the study. However, when actual 

and predicted values are compared, it is observed that ML models still predict data 

above a certain value (10000 lux) with lower performance even at high R2. As 10000 

lux does not define a threshold when calculating the electrical lighting consumption 

based on daylighting, this did not cause any issues with operation. The study's 

suggested data augmentation strategy can be implemented in future studies if the ML 

model is intended to perform better on this value. Data can be generated using 

various scenarios to get lux values of more than 10000 lux, and the ML model can 

be trained once more. 
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4.1.2 Correlations Between Input Features and Outputs 

The correlation matrix analyzes the relationships between each feature, enabling the 

analysis of the relation between inputs and output features. The study analyzed the 

relationship between average illuminance and each input. Figure 4.2 shows the 

correlation matrix of the data. 

 

Figure 4.2 Correlation matrix to analyze relationships between inputs and output 

It was observed that VT is the most efficient parameter in predicting daylighting 

illuminance. An increase in VT leads to an increase in the daylight penetrating the 

space, and a decrease results in the space being less illuminated by daylight. There 

is a positive correlation between VT and daylighting illuminance. The importance 

value is expected to be high in predicting the daylighting illuminance value.  
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The wwrSouth and wwrEast were the parameters most correlated with illuminance 

after VT. Considering that there are a high amount of sunlight coming from the south, 

east and west façades throughout the year, it is expected that the increase in the ratio 

of windows on these façades will directly and effectively affect the illuminance. 

Internal parameters were the three most influential parameters in estimating 

illuminance, as classified in Section 2.4. After these parameters, the most effective 

parameter in estimating the average illuminance is the global horizontal illuminance, 

chosen as one of the external parameters.  GHI is the amount of light that falls on the 

horizontal plane, parallel to the ground, hourly throughout the year, so it is expected 

to be highly correlated with the average illuminance.  

SESouth was one of the external parameters positively correlated with illuminance. 

SESouth calculates the amount of sky visible through windows, considering the 

influence of surrounding buildings on the south façade. As the SE decreases, the 

building remains under the shading effect of the surrounding buildings more, and 

accordingly, the average illuminance value will decrease. The increase in SE 

indicates that the visible sky will increase, and the average illuminance value will 

increase accordingly. The fact that the SE on the south side is more effective than 

the SE on the other directions can be explained by the high amount of daylight 

coming from the south throughout the year.   

Although the z-axis was positively correlated with illuminance, it was not correlated 

as highly as expected. Section 2.8 also covers this situation. The amount of 

illumination does not necessarily increase on the upper floors, according to an 

analysis of the units' daylighting illuminance values at the urban scale. A downstairs 

unit may receive more illumination from nearby buildings than an above flat. So, 

when analyzing units at the urban level, it is important to consider the surrounding 

environment (such as the effect of the surrounding buildings and the floor on which 

it is located). 

Apart from these, the relationship of all input features with output is given in the 

correlation matrix. The fact that the wwr and SE values on the north façade have the 
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least relationship with the average illuminance value is significant since there is no 

sufficient daylight from the north side throughout the year. 

4.2 Predicted Electric Lighting Energy Consumptions 

Electric lighting energy consumption for each zone was calculated following the 

model development. As stated in Section 3.4, the process consists of three steps: 

converting the predicted daylighting illuminances to lighting fractions, multiplying 

the obtained lighting fractions with the created occupancy presence values, and 

multiplying the resulting value with the lighting power density. The value obtained 

from these processes gives the hourly electrical lighting consumption in Wh/m2. The 

annual electrical lighting energy consumption per square meter is calculated by 

summing the hourly values throughout the year and converting them to kWh. In order 

to calculate the electrical lighting energy used for the total illumination of the space, 

the consumption data obtained in kWh/m2 is multiplied by the total square meter of 

the space. Electric lighting energy consumption was calculated with the proposed 

method for all zones in the original dataset used in the ML model. Figure 4.3 

demonstrates the predicted electrical lighting consumption distribution, and Figure 

4.4 shows the predicted annual electrical lighting consumption calculated for each 

zone in kWh/m2 and kWh.  
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Figure 4.3 Predicted annual electric lighting energy consumption (kWh/m2) 

 

 

Figure 4.4 The predicted annual electrical lighting consumption for each zone in 
kWh/m2 and kWh 
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Electric lighting consumption differed according to the units' illumination amount, 

lighting power density, and occupancy types. Table 4.2 shows the distribution 

statistics of predicted electric lighting energy consumption. Among the units 

analyzed, the average electrical lighting energy usage per square meter was 31.82 

kWh. The lowest electrical lighting consumption per m2 per year is 17.7 kWh/m2, 

and the highest electrical lighting consumption is 52.28 kWh/m2, according to the 

examination of the predicted lighting energy consumption results based on 

daylighting, occupancy, and lighting power densities. When the units with the least 

electrical lighting consumption were examined, it was analyzed that they received 

light from the south façade and generally had windows on three façades. The units 

with the highest electrical lighting consumption were those located on the ground 

and first floors and those that did not receive light from the south façade. Sufficient 

daylight coming from the south façade throughout the year has increased the 

illuminance values, and accordingly, the artificial lighting consumption of the units 

on the south façade due to daylighting has decreased. 

 

Table 4.2 Distribution statistics of predicted annual electric lighting energy 
consumption (kWh/m2) 

mean 31.820124 

std 9.153912 

min 17.702580 

25% 24.468645 

50% 30.353210 

75% 38.928980 

max 52.281470 
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4.3 Comparative Analysis of Impact of Context on Predicted Electric 

Lighting Consumptions 

One of the aims of the method proposed in this thesis emphasizes that it is essential 

to include urban form parameters in the ML models that predict daylighting 

performance metrics on an urban scale. Accordingly, a comparative analysis of the 

proposed method was made for two different cases: electric lighting energy 

consumption data was calculated when the impact of the surrounding buildings was 

included in the calculations (represented in Section 4.2) and when the units were 

considered independent of the urban scale. 'Context included' represents the 

electrical lighting energy consumption data generated based on the ML model that 

was trained considering the impact of the surrounding buildings and the estimated 

daylighting illuminance values associated with it (the results are also given in Section 

4.2). 'Context excluded', on the other hand, represents that any obstruction does not 

shade each unit, and accordingly, the electrical lighting energy consumption is 

calculated with the analyzed daylighting illuminance values. Table 4.3 shows the 

different parameters used in the context included and excluded and how each value 

is calculated. 

Table 4.3 Descriptions of context included and context excluded 

 Context included Context excluded 

Urban shading with context without context (sky exposure 

= 100) 

Daylight illuminance 

calculation 

ML (XGBoost) ML (XGBoost) 

Lighting schedule generation (Mardaljevic et al., 2011) (Mardaljevic et al., 2011) 

Occupancy schedule (Malekpour Koupaei et al., 

2022) 

(Malekpour Koupaei et al., 

2022) 
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Figure 4.5 shows the comparison of annual electric lighting energy consumption in 

cases of context buildings are included and excluded, and Figure 4.6 shows the 

density plots of annual electric lighting energy consumption in cases of context 

buildings included and excluded.  

Annual Electric Lighting  

Energy Consumption (kWh/m2) 

Annual Electric Lighting  

Energy Consumption (kWh) 

  
(a) : Annual electric lighting energy 

consumption per square meter 

(b) : Total annual electric lighting energy 

consumption  

 

Figure 4.5 Comparison of annual electric lighting energy consumption 
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(a) : Density plots of annual electric lighting energy consumption per square meter in case of 

context included and excluded (red: context included, orange: context excluded) 

 

(b) : Density plots of total annual electric lighting energy consumption in case of context 

included and excluded (red: context included, orange: context excluded) 

Figure 4.6 Density plots of annual electric lighting energy consumption in cases of 

context buildings are included and excluded 
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Table 4.4 shows the statistical descriptions of electric lighting consumption in cases 

of context included and excluded. When the context is included, the units' average 

annual electrical lighting energy consumption is 31.8 kWh/m2, while this value 

decreased to 6.55 kWh/m2 when the contexts are excluded. Additionally, when the 

context buildings are considered, the calculated electrical lighting consumption 

reaches a maximum value of 52.28 kWh/m2, whereas when the context is excluded, 

the highest value drops to 38.15 kWh/m2. The fact that the units are handled 

independently of the surrounding buildings on an urban scale has led to the 

overestimation of the daylighting illuminance values, resulting in the 

underestimation of the electrical lighting energy consumption calculated based on 

daylight. 

 

Table 4.4 Statistical descriptions of electric lighting consumption in cases of 
context included and excluded 

Electric lighting 

consumption 

results (kWh/m2) 

mean std min 0.25 0.5 0.75 max 

Context included 31.82 9.15 17.7 24.46 30.35 38.92 52.28 

Context excluded 6.55 10.04 0 0.79 1.29 7.08 38.15 

 

4.4 Comparative Analysis of UBEM Simulation Results and Predicted 

UBEM Results 

Standard lighting schedules that include hourly lighting fractions throughout the year 

are used when calculating electrical lighting consumption in Urban Building Energy 

Modeling (UBEM). These fractions are multiplied by the lighting power density in 

UBEM simulations to determine the energy used for electric lighting. These 

schedules, however, are constant throughout all units, independently from daylight 

illuminances. At the same time, common simulation models portray occupants as 
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following identical schedules and engaging in the same behaviors leading to the 

calculation of inaccurate hourly demand peaks and, ultimately, an inaccurate 

representation of urban energy demands (el Kontar & Rakha, 2018). The typical 

lighting and occupancy schedules used to estimate the energy consumption of 

electric lighting in UBEMs are shown in Appendix D.   

Table 4.5 Descriptions of UBEM simulated and UBEM predicted 

 UBEM simulated UBEM predicted 

Urban shading with context with context 

Daylight illuminance 

calculation 

Independent from daylight 

illuminance 

ML (XGBoost) 

Lighting schedule generation Standard lighting schedule (Mardaljevic et al., 2011) 

Occupancy schedule Standard occupancy schedule (Malekpour Koupaei et al., 

2022) 

 

The estimated electrical lighting consumption produced by the suggested method is 

compared with the electrical lighting consumption calculated by standard lighting 

and occupancy schedules. For this comparison, the electrical lighting consumption 

results calculated using the approach described in the thesis for the same units 

(predicted UBEM) were compared to the simulation results of the project with the 

code 120M997 (simulated UBEM). Table 4.5 shows the different parameters in the 

methods used in ‘UBEM simulated’, and ‘UBEM predicted’, and how each value is 

calculated. Figure 4.7 demonstrates the annual electric lighting energy consumption 

(kWh/m2) in cases of predicted UBEM and simulated UBEM, and Figure 4.8 shows 

the density plots of annual electric lighting energy consumption in cases of predicted 

UBEM and simulated UBEM. 
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Figure 4.7 Comparison of annual electric lighting consumption in cases of UBEM 

predicted and simulated 
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Figure 4.8 Density plots of annual electric lighting energy consumption in cases of 

UBEM predicted and UBEM simulated (orange: UBEM predicted, red: UBEM 

simulated) 

Table 4.6 Statistical descriptions of electric lighting consumption in cases of 
UBEM predicted and UBEM simulated 

Electric lighting 

consumption 

results (kWh/m2) 

mean std min 0.25 0.5 0.75 max 

UBEM predicted 31.22 10.53 12.97 23.01 29.5 37.75 58.34 

UBEM simulated 43.56 5.95 34.74 38.38 42.13 48.6 54.58 

 

Table 4.6 shows the statistical descriptions of electric lighting consumption in 

UBEM-predicted and UBEM-simulated cases. The average electrical lighting energy 

usage was 43.56 kWh/m2 when the UBEM simulated electrical lighting energy 

consumption statistics were considered. In the UBEM simulation results, the unit 
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with the lowest electric lighting energy consumption value of 34.74 kWh/m2 and the 

highest value of 54.58 kWh/m2 used electric lighting energy. 

Predicted UBEM's electric lighting energy consumption statistics indicate that the 

average value was 31.22 kWh/m2. While the minimum electrical lighting energy 

consumption value observed in the UBEM predicted results was 12.97 kWh/m2, the 

maximum value was 58.34 Kwh/m2. 

The average lighting energy consumption is greater in the simulation findings when 

UBEM simulation and predicted electric lighting energy consumption results are 

compared. This demonstrates that when calculations are performed using standard 

schedules on an urban scale in the research area, the calculated results overestimate 

the energy used for electric lighting. Overestimating the energy use for electrical 

lighting also results in overestimating the internal load of the building. It was found 

that, within the scope of the studied area, the units required less artificial light than 

the standard lighting and occupancy schedule indicated, resulting in reduced 

electrical lighting energy consumption. 

When the distribution graphs are examined, it is seen that the electrical lighting 

energy consumption data of the units calculated with UBEM simulations range 

between 34.74 and 54.5, while this range widens to the range of 12.97 and 58.34 in 

UBEM predicted. This results from the varying electrical lighting consumption 

needs of the units depending on daylighting on an urban scale.  On an urban scale, 

‘UBEM predicted’ more accurately captured the variation in electrical lighting 

energy requirements that alter based on the daylighting illuminance of the units and 

variable occupancy profiles. The only factor affecting the values of the units in the 

UBEM simulation results that varied from one another was the lighting power 

density. 
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CHAPTER 5  

5 CONCLUSION 

The study's contributions were discussed in this chapter by going over the research 

objectives again. The proposed method's contributions and limitations were 

examined. 

5.1 Contributions 

The developed methodology was applied to residential units in Bahçelievler, Ankara. 

The methodology was based on a data-driven approach with four main steps. The 

findings demonstrated that various ML models can be utilized to forecast indoor 

daylighting illuminances in urban settings. With the suggested methodology, indoor 

daylighting illuminances in an urban setting and, consequently, electric lighting 

energy consumption can be predicted. For predicting interior daylighting 

illuminances, the ML model in the presented method works well with an R2 value of 

0.94 and an MAE value of 0.01. The following paragraphs will explore the proposed 

methodology's contributions based on dataset generation, ML model development, 

and electric lighting energy consumption steps.  

Dataset generation consists of two steps: 3D modeling and simulation-based data 

generation. Simulation models were utilized to generate the hourly average 

daylighting illuminance data that would be used to train machine learning 

algorithms. The simulation models required the preparation of three distinct types of 

information geometric, semantic, and climate data. The use of geometric data from 

publicly accessible sources demonstrates the applicability of the developed 

methodology in urban settings with comparable open sources, such as EPC and NVI. 

In the absence of publicly accessible data such as VT, data can also be generated 

using common distribution types and value interval determination. Generating data 
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based on distribution provides an advantage in considering the diversity of units on 

the urban scale. The created dataset is available if third parties request the generated 

dataset to calculate hourly daylighting illuminance on an urban scale. The success of 

the generated input data varies according to the user's modeling experience and 

model level. For the readers' information, even if the same methodology proposed in 

the thesis is used, the results calculated by another model or modeling the same 

model by another person can differ. The differences between the generated 

simulation-based data will always remain a challenging issue in energy modeling.  

The ML model development aims to develop an ML model to estimate indoor 

daylighting illuminances in an urban context accurately. The suggested 

methodology's ability to forecast indoor daylighting illuminance with hourly 

resolution is one of its novelties. Predicting hourly indoor illuminances enables 

hourly electricity lighting consumption to be calculated. In order to analyze whether 

the produced electrical energy is consumed hourly or not, it is important to calculate 

data with hourly resolution. Hourly average illuminance information is obtained 

from the simulation model prepared with input data. Although illuminance values 

were calculated at grid resolution in the study, the values calculated at each grid 

resolution were given to ML models by taking the average value to represent the 

entire space.  The main reason for choosing the average value representing the space 

instead of calculating each grid is as follows: In the study, it was desired to analyze 

how the consideration of variable internal and external parameters at the urban scale 

affects the ML models and indoor daylighting illuminance estimation performance 

and the effect on the electrical lighting energy consumption calculated based on 

daylight. Each place is thought to be illuminated with a single artificial lighting, and 

calculations are made according to this assumption. The fact that each unit was 

different from the others in square meters would uncontrollably increase the number 

of grid points, and the electrical lighting consumption was calculated accordingly, 

considering that there was a light source at each grid point.  
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Several ML methods were compared to observe which is the most successful in 

predicting indoor daylighting illuminances in an urban context. High-performance 

ML models were achieved with the data augmentation method proposed in the study. 

Data augmentation: The distribution of the data in the dataset and the dataset's size 

significantly affect ML models' performance. This study observed that ML models' 

performance was very low when they were trained with the initial data (V1-base 

scenario). The distribution of the available data was examined, and it was observed 

that the dataset was unevenly distributed. A substantial part of the data has been 

collected in a certain value range and has become representative of the whole dataset. 

In order to expand the distribution range of the data and to augment the data that is 

scarce in the dataset, new scenarios were produced, and new input parameter ranges 

were determined. New simulations were made with the input features whose 

intervals were expanded. The solution is to widen the space set so that ML models 

can recognize as wide a range of data as possible and make predictions with better 

performance. The prediction performance of the retrained ML models with the 

proposed method has increased. Estimating daylighting illuminance values at an 

urban scale is a complex problem, and it has been seen that increasing the dataset 

size and diversity affects ML models' performance. In this study, no further data 

augmentation was made to improve the model performance when the R2 ratio of 0.94 

and an MAE value of 0.01 was obtained. By using the data augmentation method 

proposed in this study, data diversity in the ML model, where higher performance is 

expected, can be increased by generating new data using different ranges of different 

input parameters. 

Electric lighting energy consumption calculation includes three basic steps: 

Creating the lighting fraction values according to the illuminance values from the 

ML models, multiplying these values with the created occupancy schedules, and 

multiplying the obtained value with the lighting power density of the units. The 

equation used to create the lighting fractions is based on graphs from a publication 

regarding a code used for residential buildings. In order to reflect the diversity of the 

occupancy profile, different occupancy schedules have been created according to 
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household numbers and days of the week. Lighting power densities were obtained 

by creating a distribution according to the value range obtained from the literature. 

The developed method, with references from different studies, shows a novel 

approach that provides electricity consumption for lighting depending on variable 

lighting and occupant profiles on an urban scale. Validation of the calculated values 

is challenging. No hourly resolution consumption data can be validated for electrical 

lighting consumption in cities. This makes it impossible to validate the results 

obtained with real data. Studies in the literature can be analyzed with the results 

calculated with the proposed method comparatively. However, the studies in the 

literature are very different from each other compared to the data used. For example, 

most of the studies in the literature do not consider a lighting energy consumption 

calculation based on the illuminance value. Also, the occupancy profiles that studies 

use, if any, differ greatly from each other. The lighting power density values of the 

examined units also diverge from each other. Many of the studies in the literature 

use a fixed lighting power density without creating dispersion for each unit. 

Therefore, it is impossible to compare the results calculated with the obtained 

method with the studies in the literature. The most realistic comparison scenario is 

the project coded 120M997, where the same units are analyzed with urban-scale 

building energy simulations. Here, electrical lighting consumption is calculated with 

standard lighting schedules independent of the lighting performance of the units. 

However, considering different occupancy profiles, having identical units, and 

creating the lighting power densities by distribution was the closest result that could 

be validated with the method proposed in the thesis. It has been observed that the 

electrical lighting consumption data calculated with the method proposed in the 

thesis is much less than the results obtained with the simulations. Accordingly, the 

electrical lighting and the internal load handled independently from daylighting at 

the urban scale are overestimated. 
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5.2 Limitations and Future Work 

The results show that several machine learning models can be used to predict interior 

daylighting illuminances in urban contexts. Indoor daylighting illuminances in an 

urban environment and electric lighting energy consumption can be calculated using 

the proposed methodology. The developed method enables indoor daylighting 

illuminance estimation by considering the shading effect of the surrounding 

buildings on an urban scale and calculating the electrical lighting energy 

consumption in hourly resolution depending on the predicted daylighting. At the 

same time, the methodology considers variable occupancy profiles at the urban scale 

with references from different sources. The study can represent the diversity of units 

on an urban scale in terms of daylighting illuminance and occupancy. However, the 

study can be strengthened and challenged in several ways. In the following 

paragraphs, several limitations of the proposed methodology and how future works 

will increase the applicability of the developed methodology will be discussed.  

Orientation of the buildings: In the study, each unit is positioned at an angle of 90 so 

that the y-axis points north-south and the x-axis points east-west. This enabled the 

input parameters to be handled easily in four directions (north, south, east, and west). 

Window ratio and SE information are entered as separate input features for each 

direction. However, if the units were standing at a different angle than 90, the 

intermediate directions (such as northwest and southeast) would have made it 

impossible to represent the parameters as only four directions. In such a case, either 

alternative direction information should be provided as parameters to the ML model, 

or the orientation of the buildings should be specified using both direction and angle. 

Bahçelievler has a gridiron morphology, so the buildings are located parallel to each 

other. This ensures that the directions represented for each building are the same. 

However, if the buildings were not parallel, the same directions could not be 

mentioned for each building. 

Form of the units: The units are modeled to each hand to fit into a rectangular layout, 

simplifying their layout. Layout information was obtained from the 2D file from the 



 
 

108 

ministry. However, while modeling, each building area has been transformed into a 

rectangular form without deterioration to prevent complex problems arising from 

geometries. This approach is widely used in the literature, especially in energy 

modeling studies.  

Data imbalance: In the study, an imbalance was observed in the distribution of the 

data obtained by simulation, requiring the need to produce data with new scenarios. 

When the data is more evenly distributed, data augmentation may not be needed, and 

ML models can be trained with high performance with fewer datasets. 

This thesis dealt with a gridiron urban morphology; as a result, the trained model’s 

predictive capacity is highest in similar morphologies. In future works, other 

morphologies (organic, radial, no pattern) can be studied, and corresponding ML 

models can be developed with a higher level of generality.  

This study's objective is to estimate the values of interior daylighting illuminance at 

the urban scale. The regression issue was resolved using three different ML models: 

MLP, RF, and XGBoost. The study compared the success of different ML models in 

estimating the indoor daylighting illuminance values instead of estimating with a 

single ML model. These models performed well in terms of prediction. Different 

hyperparameters were used for different ML models examined in the study. 

Hyperparameters combined with the random search are tuned to improve model 

performance. However, the parameters and values specified here can always be 

expanded and differentiated to improve the performance of ML models. The 

estimation performance can be improved by employing various models and models 

with various architectures in future works. 
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B. Statistical Descriptions of Input Data 

 mean std min 0.25 0.50 0.75 max 

average illuminance 
value 

436.94 1188.39 0.00 0.00 6.70 210.58 15032.40 

z-axis 1.70 1.28 0.00 1.00 2.00 3.00 4.00 

wwrNorth 0.13 0.13 0.00 0.00 0.16 0.23 0.90 

wwrWest 0.14 0.14 0.00 0.00 0.17 0.23 0.90 

wwrSouth 0.15 0.15 0.00 0.00 0.17 0.23 0.90 

wwrEast 0.14 0.14 0.00 0.00 0.17 0.23 0.90 

Aspect ratio 1.02 0.36 0.54 0.73 1.08 1.17 1.63 

TotalWindow/Total
FloorArea 

0.14 0.05 0.06 0.11 0.12 0.19 0.23 

SENorth 41.42 36.72 0.00 0.00 49.50 69.27 100.00 

SEWest 42.10 37.15 0.00 0.00 49.61 70.73 100.00 

SESouth 43.13 37.81 0.00 0.00 49.95 76.76 100.00 

SEEast 44.09 37.76 0.00 0.00 54.38 78.25 100.00 

VT 0.38 0.13 0.17 0.32 0.36 0.43 0.90 

floorarea 115.10 37.20 70.50 82.90 106.60 145.00 213.20 

Global Horizontal 
Illuminance 

25801.85 34490.33 0.00 0.00 2097 47670 121992 
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C. Tuned Hyperparameters for Prediction Models 

Model Description 

MLP Neural Networks 

MLP Regressor 

Hidden_layer_sizes = [32,32], [32,64], [64,32], [64,64] 

learning_rate = [0.001, 0.002, 0.004, 0.008] 

batch_size = [ 256, 512, 1024, 2048, 4096] 

RF Ensemble Models 

Random Forest Regressor 

n_estimators = [10, 20, 30, 40, 50] 

max_depth = [10, 21, 32, 43, 54, 65, 76, 87, 98, 110, 

None] 

min_samples_leaf = [1, 3, 5, 7],  

min_samples_split = [2, 5, 10, 20]  

XGBoost Ensemble Models 

XGBoost Regressor 

n_estimators = [100, 200, 300] 

max_depth = [ 3, 5, 7, 9, 11] 

min_child_weight = [1, 3, 5] 

gamma = [0.0,0.1,0.2, 0.3, 0.4, 0.5], 

learning_rate = [ 0.1, 0.2, 0.4, 0.8]  

subsample = [0.5, 0.7, 0.8, 0.9] 

colsample_bytree: [0.6, 0.7, 0.8, 0.9] 
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D. Standard Midrise Apartment Occupancy Schedule 


